The Guided Moments formalism:
a brief introduction

Jay Kalinani
Center for Computational Relativity & Gravitation, RIT

Based on Manuel R. Izquierdo et al.
PRD 109,043044 (2024) arXiv:2312.09275

Slides adapted from Manuel’s talk



Why do we care about neutrinos?

* BNS/BHNS mergers: r-process Wang+23 Issa+25
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nucleosynthesis, matter outflows/winds

* Cooling of collapsar disks

* Core-collapse supernovae
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Background equations

* Einstein’s field equations with stress-energy tensor comprising fluid and radiation contributions
Gap = 87T, = 87 (T3 + )

* Radiation stress-energy tensor: considers three neutrino species

T Z oo =To +Top +Top
* GRRMHD equations:
= — Z S’ ngab = 0 vb(Tnb(np + nn)ub) =
v
Conservation equations of Maxwell’s equations Baryon number conservation

energy and momentum



The Boltzmann equation

» Distribution function of neutrinos in 7D phase-space: [, (:Ij‘a’, pa’)

3
* Number of neutrinos in 6D volume of phase-space: N (t) = /daz d—fy(?f X 7]?3)

* Evolution of the distribution function via the Boltzmann equation:

p" L I p° Ofv 2
0x? L opb OT

i _ 4 coll

Time evolution of a 6D function: an expensive computational challenge!

Approximate methods: Exact methods:
. Leakage schemes [Ruffert+97, Rosswog+03, ..] e Monte-Carlo algorithms [Foucart+22, Kawaguchi+23]
* Truncated moment schemes (MO, M1, ..) * Guided Moments [Izquierdo+24]

[Thorne+97, Shibata+11, Radice+22]



Truncated moments: M| scheme

* Evolution of first two moments of the distribution function, i.e. energy density and flux density

* Grey-approximation: evolves energy integrated moments
* Stress-energy tensor using lower order moments:
T, = Ju®u’ + Hu’ + H'u® + Q*° Co-moving frame
T, = En®n’ + Fon® + F'n® + P Eulerian frame
* Conservation equations in 3+| form:
O:(vVYE) + 0; [\(aF* — B'E)| = a7 |PYK;; — F*(0;a) /o — 8%ny |
Oc(\YF:) + 05 [VA(aP?, — B F)| =7 :—E&;a + F;0;47 A (;ij(?mkj + ozS“%a:

e Fluid-neutrino interaction term in 3+1| form:
S, = -8, =W [(77 + ksd) — (Kg + Ks) (E — szz)} ,
Si =8Via = WM — keJ)V; — (Ko + Kks)H;



Truncated moments: M| scheme

* Evolution equations not closed due to unknown second moment
* Closure relations: analytical prescription to interpolate the second moment between optically

thick and thin regimes

3X(E) = 1 Stnin |, 311 = X(&)] Hins
M1 _ thin thick
 Optically thick (diffusion) limit: * Optically thin limit:

] in FZF

ab = Jenickhab /3 Pyt = g,
neutrinos and matter in thermodynamical equilibrium free streaming neutrinos
* Minerbo Eddington factor: gives exact results in both limits
1 6 — 26 + 6£2 _[H H?
e =g+ () =75



Truncated moments: M| scheme

* Stiff source terms appear due to neutrino-matter interactions:

OU + O, F (U) = G(U) + ~S(U)

€

€ — OO = system primarily follows hyperbolic evolution (explicit RK)

€ — () = stiff term dominates; small perturbations in U leads to rapid changes (implicit RK)

* Full explicit and implicit solvers are computationally very expensive!

* Semi-implicit schemes: advection terms, metric sources (explicit); coupling with matter (implicit)

U - U

() — 77— =0 F' U] +GUN]+s[U7], |
2 Racice+22] Only Ist order accurate..
U(k+l) _ (k) . Tt
(ii) v = —9;F'[U*] + G[U*] + S[Uk*D 1.

* Implicit-Explicit RK (IMEX): same CFL as RK4 + 2nd order accurate [izquierdo+23]



Monte-Carlo algorithm

* Traces the paths of an ensemble of neutrino packets N, each containing [V neutrinos

* Each packet carries information on: (t, ', iy Ng, Vo, By s My Ky K,y - )

a.-b
» Radiation stress-energy tensor: T“b t, q; N PPk
> gv VEINGY

* MC moments:

— Nkek — Nkeklk — pi-{]?'l?
E = E F. = g d P = Pp.. = E Ny /
a 1] (% — t
kEAV VeVl kEAV VIav keAv V gaVpy
where € = —p];na is the neutrino energy measured in Eulerian frame, and nall; = 0



Monte-Carlo algorithm

» Step |: neutrino packets are created with following information (¢, z, pi, Nk, Va, Ev,, 1, Kas Ks, - )

* Step 2: prescriptions for free streaming (propagation)
* Neutrinos move along geodesics until they reach the domain boundary or undergo interactions
* Step 3: prescriptions for emission/absorption/scattering (probabilistic)

> Emission results in creation of new neutrino packets

> Based on optical depth along the geodesic, packets are either removed due to absorption or have momenta updated

considering only elastic scattering

* Step 4: MC moments are updated from the new positions and momenta

t?’l +1

Emission Scattering

O

Absorption
Propagation




M| versus MC

Ml formalism

* Advantages

>~ Conservative 3+ system of equations

» Grid based method

* Disadvantages

>~ Approximate formalism
>~ Non physical behavior in optically thin regions

> Energy integrated moments considered



M| versus MC

MC formalism

* Advantages

>~ Converges to exact solution

> Energy-dependent scheme

* Disadvantages

> Expensive in optically thick regimes
> Statistical errors decrease as the square root

of the number of samples: O(N~1/2)



Guided Moments formalism

* Hybrid method coupling M| and MC schemes
* Inspired by [Degond+1 |, Foucart| 8]

* Advantages

INTERMEDIATE

» MC informed closure relation for M1, accurate for opt.
thin regimes
> Avoids expensive cost of MC in opt. thick regimes

>~ Converges to exact solution (in both regimes)

* Disdvantages

» Computationally more expensive than M|

> Transition functions to be heuristically determined



Guided Moments formalism

) MC informed closure for M|

k., .k
w ; 2 N LEAV V—9gAVpy

* GM second moment: P%M — h(f)P,g-C +[1 — h(&)|PM

1
- 1 4+ e—2k(E—&0)

* Transition function: h(f)

* Solution: substitute Pg-l — PZ-C;M (GMI solution)




Guided Moments formalism

2) Matching of lowest moments

jcl:u:jaz_ abnb:Ena+Fa j;\J’IC:

e GM first moment:  J. = h(&)T,° +[1 — h(&)] T

1
1+ e 2 k(§—&o)

* Transition function: h(f) —

» Solution: substitute J.~ — J  (GMC solution)

This substitution involves rescaling (via Lorentz boost transformations)
the neutrino 4-momentum of MC using GM solution

abn

=2 N
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Algorithm of the Guided Moments (GM) Manuel’s slide

1. for each substep do

2 Evolve M1 substep

3. Evolve MC substep

4: Compute the lowest moments of the GM —

Ja" =h() Tz +[1—h(E)| %"

9. Compute transformation matrices —
C
= AT, )

6:  Transform MC 4-momentums to match 7°* —

GM,k ]MC MC aAb

Py E Py

7.  Update MC 4-momentums and compute new PMC
8: Compute GM pressure tensor —

P =h(€)Pj +[1—h(E)|P]

9:  Substitute P} — P’
10: end for




Double beam test
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Numerical tests
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Back-up slides



Algorithm of Monte-Carlo (MC) [simplified version] Manuel’s slide

1: Initialization: Npackets, Ep, Ax, At, V, Kz, K, M, u-...
2. for j =1 10 njiers do
3. Compute N, = Eﬁ:;“kset ~ At K, Ny
4: Emission: Generate packets
5: for i = 1 t0 Npackets dO
6: At, = At
/: while Az, < Ar do
8: Atgs = —In(rq,s) L where rs € [10770,1]
h Atmin = Min(Aty, At,, Aty)
10: if Atin == At, then
11: Propagation: Propagate A,
12: else if Atin == At, then
13: Absorption: Delete packet
14: else if Ar,in == At then
15: Propagate At, and modify p*
16: At, = At — At
17- end if
18: end while
19: end for
20:  Reconstruct moments = (x', p;) — (E, F;, P;;)
21:. end for




