Monte-Carlo Radiation Transport

Refs: arXiv:2103.16588, arXiv:2209.02538

April 17, 2025

1

Monte-Carlo Radiation Transport

- Distribution Function
- Propagation of Packets
- Collision Terms
- Stress-energy Tensor and Moments
- Neutrino-matter Coupling

Monte-Carlo Radiation Transport

Distribution Function

- Propagation of Packets
- Collision Terms
- Stress-energy Tensor and Moments
- Neutrino-matter Coupling

When evolving the equations of radiation transport in general relativistic simulations, we aim to determine the distribution function of particles

$$f(t, x^{i}, p^{\mu}) = \sum_{k} \delta^{3}(x^{i} - x_{k}^{i}(t))\delta^{3}(p_{i} - p_{i}^{k}(t)).$$
(1)

The distribution function follows Boltzmann's equation of radiation transport

$$p^{\alpha} \left[\frac{\partial f}{\partial x^{\alpha}} - \Gamma^{\beta}{}_{\alpha\gamma} p^{\gamma} \frac{\partial f}{\partial x^{\beta}} \right] = \left[\frac{df}{d\tau} \right]_{\text{collisions}}.$$
 (2)

• Evolve a six-dimensional function in time

Discretize the distribution function of neutrinos using Monte-Carlo packets, each representing a large number of neutrinos, i.e.

$$f(t, x^{i}, p^{\mu}) = \sum_{k=0}^{n_{p}} N_{k} \delta^{3}(x^{i} - x_{k}^{i}(t)) \delta^{3}(p_{i} - p_{i}^{k}(t))$$
(3)

• Each packet represent *N_k* particles and has a single position and momentum

Monte-Carlo Radiation Transport

• Distribution Function

Propagation of Packets

- Collision Terms
- Stress-energy Tensor and Moments
- Neutrino-matter Coupling

Neglecting the finite mass of neutrinos, we evolve packets along null geodesics (Hughes et al. 1994),

$$\frac{dx'}{dt} = \gamma^{ij} \frac{p_j}{p^t} - \beta^i,$$
(4)
$$\frac{dp_i}{dt} = -\alpha p^t \partial_i \alpha + p_j \partial_i \beta^i - \frac{1}{2} p_j p_k \partial_i \gamma^{jk},$$
(5)

for a null vector, $p^t = \frac{\sqrt{\gamma^{ij}p_ip_j}}{\alpha}$.

Monte-Carlo Radiation Transport

- Distribution Function
- Propagation of Packets
- Collision Terms
- Stress-energy Tensor and Moments
- Neutrino-matter Coupling

Tabulated Reaction Rate

Use the **NuLib** library (O'Connor & Ott 2010) to generate tabulated values of the **emissivity** η , **absorption opacity** κ_a , and **elastic scattering opacity** κ_s experienced by Monte Carlo packets.

• Charged current reactions

$$p + e^- \leftrightarrow n + \nu_e, \quad n + e^+ \leftrightarrow p + \bar{\nu}_e.$$
 (6)

• Pair production/annihilation

$$e^+e^- \leftrightarrow \nu\bar{\nu}.$$
 (7)

Nucleon-nucleon bremsstrahlung

$$N + N \leftrightarrow N + N + \nu + \bar{\nu}.$$
 (8)

The output of the NuLib library, is a 4D table for η , κ_a and κ_s as a function of fluid density ρ , fluid temperature T, fluid electron fraction Y_e , and neutrino energy ν .

Liwe		

Emission

The total energy of the emitted neutrinos of that species and in that energy bin is

$$E_{\rm tot} = \sqrt{-g} V \Delta t \eta, \tag{9}$$

If the desired energy of neutrino packets within this cell is E_{target} and the central value of the neutrino energies in our energy bin is ν ,

- we emit, on average, E_{tot}/E_{target} packets, each representing E_{target}/ν neutrinos,
- the location of the packet is randomly drawn from a homogeneous distribution *in the coordinates of the simulation*,
- the 4-momentum of the neutrinos is drawn from an isotropic distribution in the fluid frame,

$$p_{\mathrm{fl}}^{\hat{\mu}} = \nu(1, \sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta).$$
 (10)

Before propagating a neutrino, we draw random numbers r_a , r_s from a homogeneous distribution in [ϵ , 1) (with $\epsilon = 10^{-70}$). The time to the next absorption/scattering event is then

$$\Delta t_{a,s} = -\frac{\kappa_{a,s} p^t}{\nu} \ln r_{a,s}, \qquad (11)$$

Consider the smallest time interval between $\Delta t_{a,s}$ and the desired time step

- If Δt_a is the smallest, the packet is absorbed.
- If Δt_s is the smallest, the packet is scattered.
 - randomly draw a new 4-momentum with the same fluid-frame energy as the original packet
 - a direction of propagation drawn from an isotropic distribution

This simple process works well as long as $\kappa_{a,s}\Delta t \lesssim 1$, i.e., when individual grid cells are optically thin or semitransparent.

Pair Annihilation in Low-density Regions

• The absorption opacity for pair annihilation

$$\kappa_{p} = \frac{C_{\text{pair}} c C_{F}^{2}}{3\pi} \frac{p^{\alpha} p^{\beta}}{\nu} \bar{T}_{\alpha\beta}.$$
(12)
$$\bar{\kappa}_{p} = \frac{C_{\text{pair}} c C_{F}^{2}}{3\pi} \frac{\bar{p}^{\alpha} \bar{p}^{\beta}}{\bar{\nu}} T_{\alpha\beta}.$$
(13)

 This estimate of κ_p is only valid in low-density regions, we choose to suppress κ_p in dense regions,

$$\kappa_p \to \kappa_p e^{-\rho/\rho_{\rm crit}}.$$
 (14)

 We take κ_p into account by correcting the number of neutrinos N represented by any given packet at the end of a time step

$$\frac{dN}{dt} = -\kappa_p N \to N(t) = N_0 e^{-\kappa_p (t-t_0)}.$$
(15)

After a time step Δt , we thus have $N(t_0 + \Delta t) = N(t_0)e^{-\kappa_p\Delta t}$.

• Pair annihilation is treated differently from other absorption processes: it never destroys Monte Carlo packets, but **only changes the number of neutrinos in each packet**.

Monte-Carlo Radiation Transport

- Distribution Function
- Propagation of Packets
- Collision Terms

• Stress-energy Tensor and Moments

Neutrino-matter Coupling

The general relativistic stress-energy tensor is,

$$T_{\mu\nu}(t,x^{i}) = \sum_{k=1}^{n_{p}} N_{k} \frac{p^{k}_{\mu} p^{k}_{\nu}}{\sqrt{-g} p_{k}^{t}} \delta^{3}(x^{i} - x_{k}^{i}(t)).$$
(16)

An observer with 4-velocity u^{μ} measures the corresponding energy density

$$J = T_{\mu\nu} u^{\mu} u^{\nu} = \sum_{k=1}^{n_p} N_k \frac{\nu_k^2}{\sqrt{-g} p_k^t} \delta^3(x^i - x_k^i(t)), \qquad (17)$$

with $\nu_k = -p^k_{\ \mu}u^{\mu}$ the energy of neutrinos in packet *k* as measured by our observer.

The average energy density within a region of coordinate volume V is then

$$J = \sum_{k \in V} N_k \frac{\nu_k^2}{\sqrt{-g} V p_k^t}.$$
(18)

Similarly, the average linear momentum $H_{\alpha} = -T^{\mu\nu}u_{\mu}(g_{\nu\alpha} + u_{\nu}u_{\alpha})$ measured by an observer with u^{μ} is

$$H_{\alpha} = \sum_{k \in V} N_k \frac{\nu_k (p^k_{\alpha} - \nu_k u_{\alpha})}{\sqrt{-g} V p_k^t}.$$
(19)

To couple particles with the fluid, we will also need to compute terms of the form

$$\int dt \kappa J = \sum_{k=1}^{n_p} \kappa_k N_k \frac{\nu_k^2}{\sqrt{-g} p_k^{t}} \Delta t_k \delta^3(x^i - x_k^{i}(t)), \qquad (20)$$

with κ an opacity that depends on position and momentum of a particle. The average of this integral within a grid cell of volume *V*,

$$\int dt \kappa J = \sum_{k \in V} \kappa_k N_k \frac{\nu_k^2}{\sqrt{-g} V p_k^t} \Delta t_k.$$
(21)

Monte-Carlo Radiation Transport

- Distribution Function
- Propagation of Packets
- Collision Terms
- Stress-energy Tensor and Moments
- Neutrino-matter Coupling

Source Terms for Fluid Evolution

The source terms appearing in the evolution of these variables due to neutrino-matter interactions are

$$\partial_t \tilde{\tau} = \dots + \alpha \sqrt{\gamma} S^\alpha n_\alpha, \tag{22}$$

$$\partial_t \tilde{S}_i = \dots - \alpha \sqrt{\gamma} S^\alpha \gamma_{\alpha i}, \tag{23}$$

$$\partial_t(\rho_* Y_e) = \dots - \sum s_i m_p \alpha \sqrt{\gamma} \frac{\eta - \kappa_a J}{\nu}.$$
 (24)

The sourece term is,

$$S^{\alpha} = \sum \eta' u^{\alpha} - \sum \left(\kappa'_{a} J u^{\alpha} + (\kappa'_{a} + \kappa'_{s}) H^{\alpha} \right).$$
⁽²⁵⁾

Calculating the changes in the evolved fluid variables over one time step Δt thus requires calculations of

$$\int \kappa'_{a} J dt; \quad \int (\kappa'_{a} + \kappa'_{s}) H^{\alpha} dt; \quad \int \kappa'_{a} J dt / \nu, \tag{26}$$

÷

- Particle Packets: $(x^i, p^{\mu}, N_k, \text{species}, ...),$
- Propagation of Packets,
- Emission, Absorption, Scattering, ...,
- Interaction with Fluid.

Particle and ParticleContainter

```
Particle<2, 2> p;
p.pos(0) = 1.0;
p.pos(1) = 2.0;
p.pos(2) = 3.0;
p.id() = 1;
p.cpu() = 0;
// p.rdata(0) is the first extra real component, not the
// first real component overall
p.rdata(0) = 5.0;
p.rdata(1) = 5.0;
// and likewise for p.idata(0);
p.idata(0) = 17;
p.idata(1) = -64;
```

```
using MyParticleContainer = ParticleContainer<3, 2, 4, 4>;
MyParticleContainer mypc;
```

- For the first two template parameters, particles added to the container are stored in the Array-of-Structs style.
- There are two more optional template parameters that allows the user to specify additional particle variables that will be stored in Struct-of-Array form.

Arrays-of-Structs and Structs-of-Arrays

Array-of-Structs

Struct-of-Arrays

foo_1	foo_2
bar_1	bar_2
8 bytes	

l_1	l_2
-------	-------

	n_1	n_2
$\frac{1}{4}$	byte	es

ParticleContainer (const	Geometry	&	geom,
const	DistributionMapping	&	dmap,
const	BoxArray	&	ba);

ParticleContainer (const	Vector <geometry></geometry>	& geom,
const	<pre>Vector<distributionmapping></distributionmapping></pre>	& dmap,
const	Vector <boxarray></boxarray>	& ba,
const	Vector <int></int>	& rr);

After calling Redistribute()

- all the particles will be moved to their proper places in the container,
- all invalid particle (particles with id set to -1) will be removed.

Initializing Particle Data

```
for (MFIter mfi = MakeMFIter(lev); mfi.isValid(); ++mfi) {
    // ``particles'' starts off empty
    auto& particles = GetParticles(lev)[std::make pair(mfi.index(),
                                         mfi.LocalTileIndex())];
    ParticleType p;
    p.id() = ParticleType::NextID();
    p.cpu() = ParallelDescriptor::MyProc();
    p.pos(0) = ...
    etc...
    // AoS real data
    p.rdata(0) = \dots
    p.rdata(1) = \dots
    // AoS int data
    p.idata(0) = \ldots
    p.idata(1) = ...
```

```
// Particle real attributes (SoA)
std::array<double, 2> real attribs;
real_attribs[0] = ...
real attribs[1] = ...
// Particle int attributes (SoA)
std::array<int, 2> int attribs;
int attribs[0] = ...
int_attribs[1] = ...
particles.push_back(p);
particles.push_back_real(real_attribs);
particles.push back int(int attribs);
// ... add more particles if desired ...
```

Iterating over Particles

• Iterate over all the AoS data

```
using MyParConstIter = MyParticleContainer::ParConstIterType;
for (MyParConstIter pti(pc, lev); pti.isValid(); ++pti) {
    const auto& particles = pti.GetArrayOfStructs();
    for (const auto& p : particles) {
        // do stuff with p...
    }
}
```

Access the SoA data

```
Ex.FillBoundary(gm.periodicity());
Ey.FillBoundary(gm.periodicity());
Ez.FillBoundary(gm.periodicity());
for (MyParIter pti(MyPC, lev); pti.isValid(); ++pti) {
   const Box& box = pti.validbox();
   const auto& particles = pti.GetArrayOfStructs();
    int nstride = particles.dataShape().first;
   const long np = pti.numParticles();
   const FArrayBox& exfab = Ex[pti];
   const FArrayBox& eyfab = Ey[pti];
   const FArrayBox& ezfab = Ex[pti];
    interpolate cic(particles.data(), nstride, np,
                    exfab.dataPtr(), eyfab.dataPtr(), ezfab.dataPtr(),
                    box.loVect(), box.hiVect(), plo, dx, &ng);
```

```
rho.setVal(0.0, ng);
for (MyParIter pti(*this, lev); pti.isValid(); ++pti) {
    const Box& box = pti.validbox();
    const auto& particles = pti.GetArrayOfStructs();
    int nstride = particles.dataShape().first;
    const long np = pti.numParticles();
    FArrayBox& rhofab = (*rho[lev])[pti];
    deposit cic(particles.data(), nstride, np, rhofab.dataPtr(),
                box.loVect(), box.hiVect(), plo, dx);
}
rho.SumBoundary(gm.periodicity());
```