[Commits] [svn:einsteintoolkit] Paper_EinsteinToolkit_2010/ (Rev. 55)

tanja.bode at physics.gatech.edu tanja.bode at physics.gatech.edu
Tue Apr 12 05:46:48 CDT 2011


User: tbode
Date: 2011/04/12 05:46 AM

Modified:
 /
  ET.tex

Log:
 Conform to SPIRES bibtex keys.

File Changes:

Directory: /
============

File [modified]: ET.tex
Delta lines: +6 -6
===================================================================
--- ET.tex	2011-04-11 22:24:34 UTC (rev 54)
+++ ET.tex	2011-04-12 10:46:47 UTC (rev 55)
@@ -1202,13 +1202,13 @@
 where $n^i$ is the unit outgoing normal to the 2-surface.
 
 The module \codename{AHFinder} provides two algorithms for locating
-\ahz{s}.  The minimization algorithm~\cite{Anninos98b} finds the local
+\ahz{s}.  The minimization algorithm~\cite{Anninos:1996ez} finds the local
 minimum of $\oint_S (\Theta - \Theta_o )^2 d^2S$ corresponding to a
 surface of constant expansion $\Theta_o$, with $\Theta_o=0$
 corresponding to the \ahz{.} For time-symmetric data, the option exists
 to find instead the minimum of the surface area, which in this case 
 corresponds to an \ahz{.} An alternative algorithm provided by
-\codename{AHFinder}, the flow algorithm~\cite{Gundlach97a}, on 
+\codename{AHFinder}, the flow algorithm~\cite{Gundlach:1997us}, on 
 which the above described \codename{EHFinder} is also based.  
 Defining a surface as a level set $f(x^i)=r-h(\theta,\phi)=0$,
 and introducing an unphysical timelike parameter $\lambda$ to
@@ -1256,7 +1256,7 @@
 in the spacetime. The module \codename{ML\_ADMQuantities} of the 
 McLachlan code~\cite{McLachlan:web} uses the latter method, creating 
 gridfunctions containing the integrand of the volume 
-integrals~\cite{Yo02a}
+integrals~\cite{Yo:2002bm}
 \begin{eqnarray}
    M &=& \frac{1}{16\pi} \int_\Omega d^3 x \left[ e^{5 \phi} 
 	\left( 16 \pi \rho + \tilde{A}_{ij} \tilde{A}^{ij} - \frac23 K^2 
@@ -1276,7 +1276,7 @@
 $e^{6\phi} \epsilon_{ij}^k x^j \tilde{A}^\ell_k$ on the boundaries of
 the computational domain vanish.  The ADM mass and angular momentum
 can also be calculated by the module \codename{Extract}, from the 
-variables stored in the base modules, as surface integrals~\cite{Bowen80}
+variables stored in the base modules, as surface integrals~\cite{Bowen:1980yu}
 \begin{eqnarray}
   M &=& - \frac{1}{2\pi} \oint \tilde{D}^i \psi d^2 S_i \\
   J_i &=& \frac{1}{16\pi} \epsilon_{ijk} \oint \left( x^j K^{km} 
@@ -1310,11 +1310,11 @@
 on Schwarzschild or calculation of the Weyl scalar $\Psi_4$.
 
 The module \codename{Extract} uses the Moncrief formalism~\cite{
-Moncrief74} to extract, given spherical surfaces of constant coordinate
+Moncrief:1974am} to extract, given spherical surfaces of constant coordinate
 radii, gauge-invariant wavefunctions $Q_{\ell m}^\times$ and $Q_{\ell
 m}^+$. The spatial metric is expressed as a perturbation on
 Schwarzschild and expanded onto a basis for tensors chosen here to be
-the Regge-Wheeler harmonics~\cite{Regge57} described by six standard
+the Regge-Wheeler harmonics~\cite{Regge:1957td} described by six standard
 Regge-Wheeler functions $\lbrace c_1^{\times\ell m}, c_2^{\times\ell m},
 h_1^{+\ell m}, H_2^{+\ell m},K^{+\ell m}, G^{+ \ell m} \rbrace$. From
 these basis functions the gauge-invariant quantities



More information about the Commits mailing list