[Commits] [svn:einsteintoolkit] Paper_EinsteinToolkit_2010/ (Rev. 239)

schnetter at cct.lsu.edu schnetter at cct.lsu.edu
Mon Nov 14 13:05:49 CST 2011


User: eschnett
Date: 2011/11/14 01:05 PM

Modified:
 /
  ET.tex

Log:
 Small whitespace corrections

File Changes:

Directory: /
============

File [modified]: ET.tex
Delta lines: +2 -2
===================================================================
--- ET.tex	2011-11-14 18:11:02 UTC (rev 238)
+++ ET.tex	2011-11-14 19:05:49 UTC (rev 239)
@@ -225,7 +225,7 @@
 without requiring exorbitant computational resources, though some BH-NS simulations have been performed with a pseudospectral code \cite{Duez:2008rb,Duez:2009yy,Foucart:2010eq,Foucart:2011mz}.  Many groups' codes 
 now include GRMHD (used widely for NS-NS mergers, and for BH-NS mergers 
 in~\cite{Chawla:2010sw}, and some include microphysical effects as
-well~(e.g.,\cite{Duez:2009yy,Sekiguchi:2011zd,Sekiguchi:2011mc}).
+well~(e.g.,~\cite{Duez:2009yy,Sekiguchi:2011zd,Sekiguchi:2011mc}).
 
 In addition to studying binary mergers, numerical relativity is a necessary 
 element for understanding stellar collapse and dynamical instabilities 
@@ -916,7 +916,7 @@
 \end{eqnarray}
 where the sub/superscript $(m)$ refers to the contribution from BH $m=1,2$; the 
 3-momentum is $p^i$; the BH spin angular momentum is $S_i$; the conformal 3-metric 
-$\gamma^{ij}$ is assumed to be flat, i.e. $\gamma_{ij}=\eta_{ij}$, and $\hat{N}^i=x^i/r$ 
+$\gamma^{ij}$ is assumed to be flat, i.e.\ $\gamma_{ij}=\eta_{ij}$, and $\hat{N}^i=x^i/r$ 
 is the Cartesian normal vector relative to the position of each BH in turn.  This 
 solution automatically satisfies the momentum constraint, and the Hamiltonian constraint 
 may be written as an elliptic equation for the conformal factor, defined by the condition $g_{ij}=\psi^4\gamma_{ij}$ or equivalently $\psi\equiv (\det|g_{ij}|)^{1/12}$:



More information about the Commits mailing list