[Commits] [svn:einsteintoolkit] Paper_EinsteinToolkit_2010/ (Rev. 239)
schnetter at cct.lsu.edu
schnetter at cct.lsu.edu
Mon Nov 14 13:05:49 CST 2011
User: eschnett
Date: 2011/11/14 01:05 PM
Modified:
/
ET.tex
Log:
Small whitespace corrections
File Changes:
Directory: /
============
File [modified]: ET.tex
Delta lines: +2 -2
===================================================================
--- ET.tex 2011-11-14 18:11:02 UTC (rev 238)
+++ ET.tex 2011-11-14 19:05:49 UTC (rev 239)
@@ -225,7 +225,7 @@
without requiring exorbitant computational resources, though some BH-NS simulations have been performed with a pseudospectral code \cite{Duez:2008rb,Duez:2009yy,Foucart:2010eq,Foucart:2011mz}. Many groups' codes
now include GRMHD (used widely for NS-NS mergers, and for BH-NS mergers
in~\cite{Chawla:2010sw}, and some include microphysical effects as
-well~(e.g.,\cite{Duez:2009yy,Sekiguchi:2011zd,Sekiguchi:2011mc}).
+well~(e.g.,~\cite{Duez:2009yy,Sekiguchi:2011zd,Sekiguchi:2011mc}).
In addition to studying binary mergers, numerical relativity is a necessary
element for understanding stellar collapse and dynamical instabilities
@@ -916,7 +916,7 @@
\end{eqnarray}
where the sub/superscript $(m)$ refers to the contribution from BH $m=1,2$; the
3-momentum is $p^i$; the BH spin angular momentum is $S_i$; the conformal 3-metric
-$\gamma^{ij}$ is assumed to be flat, i.e. $\gamma_{ij}=\eta_{ij}$, and $\hat{N}^i=x^i/r$
+$\gamma^{ij}$ is assumed to be flat, i.e.\ $\gamma_{ij}=\eta_{ij}$, and $\hat{N}^i=x^i/r$
is the Cartesian normal vector relative to the position of each BH in turn. This
solution automatically satisfies the momentum constraint, and the Hamiltonian constraint
may be written as an elliptic equation for the conformal factor, defined by the condition $g_{ij}=\psi^4\gamma_{ij}$ or equivalently $\psi\equiv (\det|g_{ij}|)^{1/12}$:
More information about the Commits
mailing list