[Commits] [svn:einsteintoolkit] Paper_EinsteinToolkit_2010/ (Rev. 240)
knarf at cct.lsu.edu
knarf at cct.lsu.edu
Mon Nov 14 13:34:05 CST 2011
User: knarf
Date: 2011/11/14 01:34 PM
Modified:
/
ET.tex
Log:
don't specify paths to figures in \includegraphics
File Changes:
Directory: /
============
File [modified]: ET.tex
Delta lines: +30 -23
===================================================================
--- ET.tex 2011-11-14 19:05:49 UTC (rev 239)
+++ ET.tex 2011-11-14 19:34:05 UTC (rev 240)
@@ -30,7 +30,14 @@
\usepackage[sort&compress,numbers]{natbib}
\renewcommand{\bibfont}{\footnotesize}
-\graphicspath{{figures/}}
+\graphicspath{{figures/}
+{cactus-benchmarks/}
+{examples/kerr/figs/}
+{examples/bbh/figs/}
+{examples/tov/}
+{examples/collapse/}
+{examples/cosmology/figs/}
+}
\setcounter{secnumdepth}{5}
@@ -457,9 +464,9 @@
\begin{figure}
\centering
- \includegraphics[width=0.3\textwidth]{figures/carpet-timestepping}
+ \includegraphics[width=0.3\textwidth]{carpet-timestepping}
\hspace{3em}
- \includegraphics[width=0.3\textwidth]{figures/carpet-interpolation}
+ \includegraphics[width=0.3\textwidth]{carpet-interpolation}
\caption{Berger-Oliger time stepping details, showing a coarse and a
fine grid, with time advancing upwards. \textbf{Left:} Time stepping
algorithm. First the coarse grid takes a large time step, then the
@@ -476,7 +483,7 @@
used in production on up to several thousand cores~\cite{Reisswig:2010cd,Lousto:2010ut}.
\begin{figure}
\centering
- \includegraphics[width=0.85\textwidth]{cactus-benchmarks/results-best}
+ \includegraphics[width=0.85\textwidth]{results-best}
\caption{Results from weak scaling tests evolving the Einstein
equations on a mesh refinement grid structure with nine levels.
This shows the time required per grid point,
@@ -2214,8 +2221,8 @@
Figure~\ref{fig:kerr_waves} shows the $\ell =2, m=0$ mode of $r\Psi_4$
extracted at $R=30M$, and its numerical convergence.
\begin{figure}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/waves}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/waves_conv}
+ \includegraphics[width=0.9\textwidth]{waves}
+ \includegraphics[width=0.9\textwidth]{waves_conv}
\caption{The extracted $\ell =2, m=0$ mode of $\Psi_4$
as function of time from the high resolution run (top plot). The extraction was
done at $R=30M$. Shown is both the real (solid black curve) and the
@@ -2242,8 +2249,8 @@
Figure~\ref{fig:kerr_waves_l4} shows similar plots for the $\ell =4, m=0$ mode
of $r\Psi_4$, again extracted at $R=30 M$.
\begin{figure}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/waves_l4}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/waves_l4_conv}
+ \includegraphics[width=0.9\textwidth]{waves_l4}
+ \includegraphics[width=0.9\textwidth]{waves_l4_conv}
\caption{Real part of the extracted
$\ell =4, m=0$ mode of $\Psi_4$ as function of time (top plot) for the high
(solid black curve), medium (dashed blue curve) and low (dotted red
@@ -2279,8 +2286,8 @@
\codename{AHFinderDirect} as a function of time at the high (black solid curve),
medium (blue dashed curve) and low (red dotted curve) resolutions.
\begin{figure}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/ah_mass}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/ah_mass_conv}
+ \includegraphics[width=0.9\textwidth]{ah_mass}
+ \includegraphics[width=0.9\textwidth]{ah_mass_conv}
\caption{The top plot shows the irreducible mass of the apparent horizon
as a function of time at low (black solid curve), medium (blue dashed curve)
and high (red dotted curve) resolutions. The inset is a zoom in on the
@@ -2311,8 +2318,8 @@
mass (top plot) and the change in the spin, $\Delta S = S(t) - S(t=0)$, as
calculated by \codename{QuasiLocalMeasures}.
\begin{figure}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/qlm_mass}
- \includegraphics[width=0.9\textwidth]{examples/kerr/figs/qlm_spin}
+ \includegraphics[width=0.9\textwidth]{qlm_mass}
+ \includegraphics[width=0.9\textwidth]{qlm_spin}
\caption{The top plot shows the total mass and the bottom plot shows the change in spin (i.e.\ $\Delta S=S(t)-S(t=0)$ of the BH as a function of time.
In both plots the black (solid) curve is for high, blue (dashed) for medium
and red (dotted) for low resolution. In the bottom plot the green (dash-dotted)
@@ -2502,8 +2509,8 @@
templates.
\begin{figure}
- \includegraphics[width=0.45\textwidth]{examples/bbh/figs/tracks}
- \includegraphics[width=0.45\textwidth]{examples/bbh/figs/mp_psi4_l2_m2_r60}
+ \includegraphics[width=0.45\textwidth]{tracks}
+ \includegraphics[width=0.45\textwidth]{mp_psi4_l2_m2_r60}
\caption{In the left panel, we plot the tracks corresponding to
the evolution of two punctures initially located on the $x$-axis at $x=\pm 3$.
The solid blue line represents puncture 1, and the dashed red line
@@ -2517,8 +2524,8 @@
\end{figure}
\begin{figure}
- \includegraphics[width=0.45\textwidth]{examples/bbh/figs/amp_convergence_all_8th}
- \includegraphics[width=0.45\textwidth]{examples/bbh/figs/phase_convergence_all_8th}
+ \includegraphics[width=0.45\textwidth]{amp_convergence_all_8th}
+ \includegraphics[width=0.45\textwidth]{phase_convergence_all_8th}
\caption{Weyl scalar amplitude (left panel) and phase (right panel)
convergence. The long dashed red curves represent the difference between
the medium and low-resolution runs. The short dashed orange curves show
@@ -2574,7 +2581,7 @@
\begin{figure}
\label{fig:tov_rho_max}
- \includegraphics[width=0.9\textwidth]{examples/tov/rho_max}
+ \includegraphics[width=0.9\textwidth]{rho_max}
\caption{Evolution of the central density for the TOV star. Clearly visible is
an initial spike, produced by the interpolation of the one-dimensional equilibrium
solution onto the three-dimensional evolution grid. The remainder of the evolution
@@ -2598,7 +2605,7 @@
\begin{figure}
\label{fig:tov_mode_spectrum}
- \includegraphics[width=0.9\textwidth]{examples/tov/mode_spectrum}
+ \includegraphics[width=0.9\textwidth]{mode_spectrum}
\caption{Eigenfrequency mode spectrum of a TOV star. Shown is the power
spectral density of the central matter density, computed from a full 3D
relativistic hydrodynamics simulation and compared to the values obtained by
@@ -2627,7 +2634,7 @@
\begin{figure}
\label{fig:tov_ham_conv}
- \includegraphics[width=0.9\textwidth]{examples/tov/ham_conv}
+ \includegraphics[width=0.9\textwidth]{ham_conv}
\caption{Convergence factor of Hamiltonian constraint violation at
$r=0\mathrm{M}$ and $r=5\mathrm{M}$. The observed convergence order
of about $1.5$ at the center of the star is lower then the general
@@ -2686,7 +2693,7 @@
than second order, but higher than first order.
\begin{figure}
\label{fig:tov_collapse_radii}
- \includegraphics[width=0.9\textwidth]{examples/collapse/radii}
+ \includegraphics[width=0.9\textwidth]{radii}
\caption{Coordinate radius of the surface of the collapsing star and radius
of the forming
apparent horizon. The stellar surface is defined as the point where $\rho$ is
@@ -2700,7 +2707,7 @@
\end{figure}
\begin{figure}
\label{fig:tov_collapse_H_convergence_at0}
- \includegraphics[width=0.9\textwidth]{examples/collapse/H_convergence_at0}
+ \includegraphics[width=0.9\textwidth]{H_convergence_at0}
\caption{Convergence factor for the Hamiltonian constraint violation
at the center of the collapsing star. We plot convergence factors
computed using a set of 4 runs covering the diameter of the star
@@ -2773,8 +2780,8 @@
time resolutions.
\begin{figure}
- \includegraphics[width=0.9\textwidth]{examples/cosmology/figs/kasner.pdf}
- \includegraphics[width=0.9\textwidth]{examples/cosmology/figs/err.pdf}
+ \includegraphics[width=0.9\textwidth]{kasner.pdf}
+ \includegraphics[width=0.9\textwidth]{err.pdf}
\caption{Top: the evolution of a vacuum spacetime of the type~\eref{eq:gowdyT3},
with $P=Q=\lambda=0$; the initial data are chosen as
$\gamma_{ij}=\delta_{ij}$ and $K_{ij}={\rm diag}(-2/3,-2/3,1/3)$.
More information about the Commits
mailing list