[Commits] [svn:einsteintoolkit] GRHydro_InitData/trunk/src/ (Rev. 190)
rhaas at tapir.caltech.edu
rhaas at tapir.caltech.edu
Fri Jan 11 09:04:03 CST 2013
User: rhaas
Date: 2013/01/11 09:04 AM
Modified:
/trunk/src/
GRHydro_Bondi.c, GRHydro_BondiM.c
Log:
GRHydro_InitData: implmented all of Bondi infall for KS coords only
From: Roland Haas <roland.haas at physics.gatech.edu>
File Changes:
Directory: /trunk/src/
======================
File [modified]: GRHydro_Bondi.c
Delta lines: +27 -19
===================================================================
--- trunk/src/GRHydro_Bondi.c 2013-01-11 15:04:01 UTC (rev 189)
+++ trunk/src/GRHydro_Bondi.c 2013-01-11 15:04:03 UTC (rev 190)
@@ -37,6 +37,7 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
+#include <assert.h>
// set to 1 to tracing output
#define LTRACE 1
@@ -129,7 +130,7 @@
for( i = 0 ; i < NDIM ; i++ ) {
for( j = 0 ; j < NDIM ; j++ ) {
- dxc_dxs[0][i] = 0. ;
+ dxc_dxs[j][i] = 0. ;
}
}
@@ -339,7 +340,6 @@
****************************************************************************/
static void setutcon(CCTK_REAL *vcon, CCTK_REAL gcov[][NDIM])
{
- int i,j;
CCTK_REAL d,b,c;
d=gcov[TT][TT];
@@ -367,7 +367,7 @@
****************************************************************************/
static void bl_gcov_func( CCTK_REAL *x, CCTK_REAL gcov[NDIM][NDIM])
{
- int i,j,k ;
+ int i,j ;
CCTK_REAL sth,cth,s2,r2,DD,mu ;
CCTK_REAL r,th;
@@ -422,7 +422,6 @@
static void set_bondi_parameters( CCTK_REAL M_in, CCTK_REAL Mdot_in, CCTK_REAL rs_in, CCTK_REAL gam )
{
- CCTK_REAL my_pi, checkp;
CCTK_REAL gtemp;
/* Set the solution-determining parameters: */
@@ -499,19 +498,18 @@
CCTK_REAL [][NEWT_DIM_B], CCTK_REAL *,
CCTK_REAL *, int) )
{
- CCTK_REAL f, df, dx[NEWT_DIM_B], x_old[NEWT_DIM_B], resid[NEWT_DIM_B],
+ CCTK_REAL f, df, dx[NEWT_DIM_B], resid[NEWT_DIM_B],
jac[NEWT_DIM_B][NEWT_DIM_B];
- CCTK_REAL errx, x_orig[NEWT_DIM_B];
- int n_iter, id, jd, i_extra, doing_extra;
+ CCTK_REAL errx;
+ int n_iter, id, i_extra, doing_extra;
- int keep_iterating, i_increase;
+ int keep_iterating;
// Initialize various parameters and variables:
errx = 1. ;
df = f = 1.;
i_extra = doing_extra = 0;
- for( id = 0; id < n ; id++) x_old[id] = x_orig[id] = x[id] ;
n_iter = 0;
@@ -522,11 +520,7 @@
(*funcd) (x, dx, resid, jac, &f, &df, n); /* returns with new dx, f, df */
- /* Save old values before calculating the new: */
errx = 0.;
- for( id = 0; id < n ; id++) {
- x_old[id] = x[id] ;
- }
/* don't use line search : */
for( id = 0; id < n ; id++) {
@@ -662,19 +656,21 @@
if( *rho < 0. ) {
if( r > 0.9*rs && r < 1.1*rs ) {
- rho_guess = rhos;
- *rho = rho_guess;
+ *rho = rhos;
}
else {
// rhotmp = (sqrt(Qdot) - 1.) * (gamma_eos - 1.) / ( gamma_eos * K );
// rho_guess = pow( rhotmp , (1./(gamma_eos - 1.)) );
if(r < rs) { ur = pow(r,-0.5) ; }
else { ur = 0.5*pow(r,-1.5) ; }
- rho_guess = Mdot / (4.*M_PI * r * r * ur);
- *rho = rho_guess;
+ *rho = Mdot / (4.*M_PI * r * r * ur);
}
- }
+ }
+ // safe guess value for multiple tries
+ rho_guess = *rho;
+
+
// set global variables needed by residual function:
r_sol = r ;
@@ -783,6 +779,10 @@
DLOOP2 { ucon[i] += dxc_dxs[i][j] * ucon_bl[j] ; }
break;
+ default:
+ assert(0 && "Internal error");
+ return; /* NOTREACHED */
+
}
return;
@@ -1007,6 +1007,8 @@
while( (j < (nbondi-1)) && (bad_bondi[j]) ) { j++; }
if( (j==(nbondi-1)) && bad_bondi[j] ) {
CCTK_WARN(CCTK_WARN_ABORT,"No available points with which to interpolate!\n");
+ ileft = 0; /* NOTREACED */
+ iright = 0; /* NOTREACHED */
}
else {
ileft = j ;
@@ -1016,6 +1018,7 @@
while( (j < (nbondi-1)) && (bad_bondi[j]) ) { j++; }
if( (j==(nbondi-1)) && bad_bondi[j] ) {
CCTK_WARN(CCTK_WARN_ABORT,"Need another point to the right but cannot find one! \n");
+ iright = 0; /* NOTREACHED */
}
else {
iright = j ;
@@ -1036,6 +1039,7 @@
while( (j > 0) && (bad_bondi[j]) ) { j--; }
if( (j==0) && bad_bondi[j] ) {
CCTK_WARN(CCTK_WARN_ABORT,"Need another point to the left but cannot find one! \n");
+ ileft = 0; /* NOTREACED */
}
else {
ileft = j;
@@ -1059,7 +1063,7 @@
#if(LTRACE)
for(i=0; i < nbondi; i++) {
- CCTK_VWarn(CCTK_WARN_ALERT, __LINE__, __FILE__, CCTK_THORNSTRING,"radial-bondisoln %12d %26.16e %26.16e %26.16e %26.16e %12d \n",i,r_bondi[i],rho_bondi[i],u_bondi[i],v_bondi[i], bad_bondi[i]);
+ CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"radial-bondisoln %12d %26.16e %26.16e %26.16e %26.16e \n",i,r_bondi[i],rho_bondi[i],u_bondi[i],v_bondi[i]);
}
#endif
@@ -1089,6 +1093,10 @@
iso_cart_to_bl_spher_pos(xpos, x_spher);
break;
+ default:
+ assert(0 && "Internal error");
+ return; /* NOTREACHED */
+
}
rspher = x_spher[RR];
File [modified]: GRHydro_BondiM.c
Delta lines: +168 -39
===================================================================
--- trunk/src/GRHydro_BondiM.c 2013-01-11 15:04:01 UTC (rev 189)
+++ trunk/src/GRHydro_BondiM.c 2013-01-11 15:04:03 UTC (rev 190)
@@ -37,6 +37,7 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
+#include <assert.h>
// set to 1 to tracing output
#define LTRACE 1
@@ -81,7 +82,10 @@
#define EXTRA_NEWT_ITER_B (2 )
#define SMALL_BONDI (1.e-20)
+//some math helpers
+#define SQR(x) ((x)*(x))
+
static CCTK_REAL Mdot, rs, vs_sq, vs, cs_sq, cs, rhos, hs, K, Qdot, gamma_eos, r_sol;
static CCTK_REAL M, a, asq, Msq;
static CCTK_REAL x_cen, y_cen, z_cen;
@@ -121,7 +125,7 @@
for Kerr-Schild coordinates.
******************************************************************************/
-static void dxc_dxs_ks_calc(CCTK_REAL *x_cart, CCTK_REAL *x_spher, CCTK_REAL dxc_dxs[][NDIM] )
+static void dxc_dxs_ks_calc(CCTK_REAL *x_cart, CCTK_REAL *x_spher, CCTK_REAL dxc_dxs[NDIM][NDIM] )
{
int i, j;
CCTK_REAL r, th, ph;
@@ -339,7 +343,6 @@
****************************************************************************/
static void setutcon(CCTK_REAL *vcon, CCTK_REAL gcov[][NDIM])
{
- int i,j;
CCTK_REAL d,b,c;
d=gcov[TT][TT];
@@ -367,7 +370,7 @@
****************************************************************************/
static void bl_gcov_func( CCTK_REAL *x, CCTK_REAL gcov[NDIM][NDIM])
{
- int i,j,k ;
+ int i,j ;
CCTK_REAL sth,cth,s2,r2,DD,mu ;
CCTK_REAL r,th;
@@ -415,15 +418,15 @@
-- the Bondi solution here in is the isentropic, spherically symmetric,
perfect fluid solution to Einstein's equations. That is, we only
assume an r-dependence, there's a in-going radial velocity only,
- and the EOS are : P = (G-1)*rho and P = K rho^G
+ and the EOS are : P = (G-1)*rho*eps and P = K rho^G
where K = const. and G is the adiabatic constant "gam".
***************************************************************************/
static void set_bondi_parameters( CCTK_REAL M_in, CCTK_REAL Mdot_in, CCTK_REAL rs_in, CCTK_REAL gam )
{
- CCTK_REAL my_pi, checkp;
CCTK_REAL gtemp;
+ static int first_call = 1;
/* Set the solution-determining parameters: */
M = M_in;
@@ -454,20 +457,17 @@
Qdot = hs * hs * ( 1. - 3. * vs_sq ) ;
gamma_eos = gam;
-#if( LTRACE )
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"\n#######################################################\n");
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"Bondi Solution Parameters1: \n");
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"------------------------- \n\n");
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"M = %28.20e Mdot = %28.20e rs = %28.20e \n",M,Mdot,rs);
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"vs = %28.20e cs = %28.20e rhos = %28.20e \n",vs,cs,rhos);
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"hs = %28.20e K = %28.20e Qdot = %28.20e \n",hs,K,Qdot);
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"gam= %28.20e r_sol= %28.20e \n",gamma_eos, r_sol);
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"rs = : %28.20e \n", rs) ;
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"urs = : %28.20e \n", vs) ;
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"rhos = : %28.20e \n", rhos) ;
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"K = : %28.20e \n", K) ;
- CCTK_VWarn(CCTK_WARN_DEBUG, __LINE__, __FILE__, CCTK_THORNSTRING,"#######################################################\n\n");
-#endif
+ if( first_call ) {
+ CCTK_VInfo(CCTK_THORNSTRING,"#######################################################");
+ CCTK_VInfo(CCTK_THORNSTRING,"Bondi Solution Parameters1: ");
+ CCTK_VInfo(CCTK_THORNSTRING,"-------------------------");
+ CCTK_VInfo(CCTK_THORNSTRING,"M = %28.20e Mdot = %28.20e rs = %28.20e",M,Mdot,rs);
+ CCTK_VInfo(CCTK_THORNSTRING,"vs = %28.20e cs = %28.20e rhos = %28.20e",vs,cs,rhos);
+ CCTK_VInfo(CCTK_THORNSTRING,"hs = %28.20e K = %28.20e Qdot = %28.20e",hs,K,Qdot);
+ CCTK_VInfo(CCTK_THORNSTRING,"gam= %28.20e r_sol= %28.20e",gamma_eos, r_sol);
+ CCTK_VInfo(CCTK_THORNSTRING,"#######################################################");
+ first_call = 0;
+ }
return;
@@ -499,19 +499,18 @@
CCTK_REAL [][NEWT_DIM_B], CCTK_REAL *,
CCTK_REAL *, int) )
{
- CCTK_REAL f, df, dx[NEWT_DIM_B], x_old[NEWT_DIM_B], resid[NEWT_DIM_B],
+ CCTK_REAL f, df, dx[NEWT_DIM_B], resid[NEWT_DIM_B],
jac[NEWT_DIM_B][NEWT_DIM_B];
- CCTK_REAL errx, x_orig[NEWT_DIM_B];
- int n_iter, id, jd, i_extra, doing_extra;
+ CCTK_REAL errx;
+ int n_iter, id, i_extra, doing_extra;
- int keep_iterating, i_increase;
+ int keep_iterating;
// Initialize various parameters and variables:
errx = 1. ;
df = f = 1.;
i_extra = doing_extra = 0;
- for( id = 0; id < n ; id++) x_old[id] = x_orig[id] = x[id] ;
n_iter = 0;
@@ -522,11 +521,7 @@
(*funcd) (x, dx, resid, jac, &f, &df, n); /* returns with new dx, f, df */
- /* Save old values before calculating the new: */
errx = 0.;
- for( id = 0; id < n ; id++) {
- x_old[id] = x[id] ;
- }
/* don't use line search : */
for( id = 0; id < n ; id++) {
@@ -662,19 +657,21 @@
if( *rho < 0. ) {
if( r > 0.9*rs && r < 1.1*rs ) {
- rho_guess = rhos;
- *rho = rho_guess;
+ *rho = rhos;
}
else {
// rhotmp = (sqrt(Qdot) - 1.) * (gamma_eos - 1.) / ( gamma_eos * K );
// rho_guess = pow( rhotmp , (1./(gamma_eos - 1.)) );
if(r < rs) { ur = pow(r,-0.5) ; }
else { ur = 0.5*pow(r,-1.5) ; }
- rho_guess = Mdot / (4.*M_PI * r * r * ur);
- *rho = rho_guess;
+ *rho = Mdot / (4.*M_PI * r * r * ur);
}
}
+ // safe guess value for multiple tries
+ rho_guess = *rho;
+
+
// set global variables needed by residual function:
r_sol = r ;
@@ -735,12 +732,115 @@
/***********************************************************************************/
/***********************************************************************************
+ calc_b_bondi():
+ ---------
+ -- calculates the contravariant magnetic vector Bcons from the amplitude of the
+ radial component of the contravariant magnetic field vector Boyer-Lindquist coordinates.
+
+***********************************************************************************/
+#if 0
+static void calc_b_bondi( CCTK_REAL B0, CCTK_REAL vtmp, CCTK_REAL x[NDIM], CCTK_REAL x_spher[NDIM], CCTK_REAL bcon[NDIM] )
+{
+ int i,j;
+ CCTK_REAL bcon_bl[NDIM] = {0.}; // F^{ab} = (b^a u^b - b^b u^a)
+ CCTK_REAL bcon_ks[NDIM];
+ CCTK_REAL gcov[NDIM][NDIM];
+ CCTK_REAL r_iso;
+ CCTK_REAL dxc_dxs[NDIM][NDIM];
+ CCTK_REAL f_bl = 1. - 2*M/x[RR];
+ CCTK_REAL sqrt_detg_bl = SQR(x[RR])*sin(x[TH])/sqrt(f_bl);
+ CCTK_REAL lapse_bl = sqrt(f_bl);
+
+ CCTK_REAL ucon_bl[NDIM] = {0.};
+ CCTK_REAL w_lorentz_bl; // Lorentz factor in Boyer-Lindquist coords
+
+ assert(a == 0.);
+
+ ucon_bl[RR] = -vtmp;
+
+ /* Find time component of 4-velocity: */
+ bl_gcov_func( x_spher, gcov );
+ setutcon( ucon_bl, gcov );
+ w_lorentz_bl = lapse_bl*ucon_bl[TT];
+
+ /* Find time component of 4-velocity: */
+ bcon_bl[RR] = B0*SQR(M)*w_lorentz_bl/sqrt_detg_bl; // -- " --
+ bcon_bl[TT] = -gcov[RR][RR]/gcov[TT][TT] * bcon_bl[RR] * ucon_bl[RR]/ucon_bl[TT]; // Equ A16 of Villiers&Hawley (corrected)
+
+ switch( coord_type ) {
+
+ case COORD_BOYERLINDQUIST :
+ dxc_dxs_bl_calc(x, x_spher, dxc_dxs );
+ DLOOP1 { bcon[i] = 0.; }
+ DLOOP2 { bcon[i] += dxc_dxs[i][j] * bcon_bl[j] ; }
+ break;
+
+
+ case COORD_KERRSCHILD :
+ bl_to_ks_con(x_spher,bcon_bl,bcon_ks);
+ dxc_dxs_ks_calc(x, x_spher, dxc_dxs );
+ DLOOP1 { bcon[i] = 0.; }
+ DLOOP2 { bcon[i] += dxc_dxs[i][j] * bcon_ks[j] ; }
+ break;
+
+
+ case COORD_ISOTROPIC :
+ r_iso = x_spher[TT];
+ bcon_bl[RR] /= 1. + 0.25 * (asq-Msq) / (r_iso*r_iso) ; /* BL to Isotropic coordinate transformation */
+ /* I believe we can use BL's cartesian transformation, while using BL's radius : */
+ dxc_dxs_iso_calc(x, x_spher, dxc_dxs );
+ DLOOP1 { bcon[i] = 0.; }
+ DLOOP2 { bcon[i] += dxc_dxs[i][j] * bcon_bl[j] ; }
+ break;
+
+ }
+
+ return;
+}
+#endif
+static void calc_b_bondi( CCTK_REAL B0, CCTK_REAL vtmp, CCTK_REAL x[NDIM], CCTK_REAL x_spher[NDIM], CCTK_REAL ucon[NDIM], CCTK_REAL bcon[NDIM])
+{
+ int i,j;
+ CCTK_REAL bcon_spher[NDIM] = {0.}; // F^{ab} = (b^a u^b - b^b u^a)
+ CCTK_REAL ucon_spher[NDIM] = {0.};
+ CCTK_REAL dxc_dxs[NDIM][NDIM];
+
+ assert(a == 0.);
+ assert(coord_type == COORD_KERRSCHILD);
+
+ // Schwarzschild and spherical Kerr-Schild (Anil's Eddington coords) ^r components are identical
+ ucon_spher[RR] = -vtmp;
+ ucon_spher[TT] = (x_spher[RR] + (x_spher[RR]+2*M) * SQR(ucon_spher[RR])) / ( sqrt( (x_spher[RR]-2*M+x_spher[RR]*SQR(ucon_spher[RR]))*x_spher[RR] ) - 2*M*ucon_spher[RR] );
+
+ // Schwarzschild and Kerr-Schild ^t components differ since t_KS = t_SW + 2*M*ln(r/(2*M)-1)
+ // NB: we remove the sin(theta) factor from detg_BL since it factors out of the divergence operator
+ bcon_spher[RR] = B0*SQR(M)/SQR(x_spher[RR]) * // Equ A16 of Villiers&Hawley plus explict compuation of detg_BL and W_BL
+ sqrt(1-2*M/x_spher[RR] + SQR(ucon_spher[RR]));
+ bcon_spher[TT] = B0*SQR(M)/SQR(x_spher[RR]) *
+ (4*SQR(M) - SQR(ucon_spher[RR])*(SQR(x_spher[RR]+2*M*x_spher[RR]))) /
+ (2*M*sqrt(SQR(x_spher[RR])-2*M*x_spher[RR]+SQR(x_spher[RR]*ucon_spher[RR])) -
+ ucon_spher[RR]*SQR(x_spher[RR]));
+
+ dxc_dxs_ks_calc(x, x_spher, dxc_dxs );
+
+ DLOOP1 { bcon[i] = 0.; }
+ DLOOP2 { bcon[i] += dxc_dxs[i][j] * bcon_spher[j] ; }
+
+ DLOOP1 { ucon[i] = 0.; }
+ DLOOP2 { ucon[i] += dxc_dxs[i][j] * ucon_spher[j] ; }
+
+ return;
+}
+
+/***********************************************************************************/
+/***********************************************************************************
calc_vel_bondi():
---------
-- calculates the 4-velocity from the amplitude of the
radial component of the 4-velocity in Boyer-Lindquist coordinates.
***********************************************************************************/
+#if 0
static void calc_vel_bondi( CCTK_REAL vtmp, CCTK_REAL x[NDIM], CCTK_REAL x_spher[NDIM], CCTK_REAL ucon[NDIM] )
{
int i,j;
@@ -783,10 +883,15 @@
DLOOP2 { ucon[i] += dxc_dxs[i][j] * ucon_bl[j] ; }
break;
+ default:
+ assert(0 && "Internal error");
+ return; /* NOTREACHED */
+
}
return;
}
+#endif
/***********************************************************************************/
/***********************************************************************************
@@ -800,7 +905,7 @@
DECLARE_CCTK_ARGUMENTS;
DECLARE_CCTK_PARAMETERS;
CCTK_REAL det;
- CCTK_REAL rhotmp, utmp, vtmp, rspher, xpos[NDIM], x_spher[NDIM], ucon[NDIM];
+ CCTK_REAL rhotmp, utmp, vtmp, rspher, xpos[NDIM], x_spher[NDIM], ucon[NDIM], bcon[NDIM];
int retval;
CCTK_REAL *r_bondi, *logr_bondi, *rho_bondi, *u_bondi, *v_bondi;
CCTK_REAL dlogr,logrmin;
@@ -818,6 +923,12 @@
# define sx(i_) scon[i_ + 0*size]
# define sy(i_) scon[i_ + 1*size]
# define sz(i_) scon[i_ + 2*size]
+# define Bconsx(i_) Bcons[i_ + 0*size]
+# define Bconsy(i_) Bcons[i_ + 1*size]
+# define Bconsz(i_) Bcons[i_ + 2*size]
+# define Bvecx(i_) Bvec[i_ + 0*size]
+# define Bvecy(i_) Bvec[i_ + 1*size]
+# define Bvecz(i_) Bvec[i_ + 2*size]
if( CCTK_EQUALS(bondi_coordinates,"Boyer-Lindquist") ) {
coord_type = COORD_BOYERLINDQUIST ;
@@ -986,7 +1097,6 @@
xpos[YY] = y[i] ;
xpos[ZZ] = z[i] ;
-
switch( coord_type ) {
case COORD_BOYERLINDQUIST :
@@ -997,11 +1107,14 @@
ks_cart_to_ks_spher_pos( xpos, x_spher);
break;
-
case COORD_ISOTROPIC :
iso_cart_to_bl_spher_pos(xpos, x_spher);
break;
+ default:
+ assert(0 && "Internal error");
+ return; /* NOTREACHED */
+
}
rspher = x_spher[RR];
@@ -1032,7 +1145,7 @@
rho[i] = rhotmp;
eps[i] = utmp/rhotmp;
- calc_vel_bondi(vtmp, xpos, x_spher, ucon);
+ calc_b_bondi(bondi_bmag, vtmp, xpos, x_spher, ucon, bcon);
det = 1./alp[i]; /* temp var */
@@ -1040,15 +1153,25 @@
vely(i) = (ucon[YY]/ucon[TT] + betay[i]) * det;
velz(i) = (ucon[ZZ]/ucon[TT] + betaz[i]) * det;
+ w_lorentz[i] = 1./sqrt(1-(gxx[i]*SQR(velx(i))+gyy[i]*SQR(vely(i))+gzz[i]*SQR(velz(i))+
+ 2*(gxy[i]*velx(i)*vely(i)+gxz[i]*velx(i)*velz(i)+gyz[i]*vely(i)*velz(i))) );
+ Bvecx(i) = w_lorentz[i]*bcon[XX] - alp[i]*bcon[TT]*ucon[XX];
+ Bvecy(i) = w_lorentz[i]*bcon[YY] - alp[i]*bcon[TT]*ucon[YY];
+ Bvecz(i) = w_lorentz[i]*bcon[ZZ] - alp[i]*bcon[TT]*ucon[ZZ];
+
SpatialDet(gxx[i],gxy[i],gxz[i],gyy[i],gyz[i],gzz[i],&det);
- Prim2ConGen(*GRHydro_eos_handle,gxx[i],gxy[i],
+ Prim2ConGenM(*GRHydro_eos_handle,gxx[i],gxy[i],
gxz[i],gyy[i],gyz[i],gzz[i],
det, &dens[i],&sx(i),&sy(i),&sz(i),
- &tau[i],rho[i],
+ &tau[i],
+ &Bconsx(i),&Bconsy(i),&Bconsz(i),
+ rho[i],
velx(i),vely(i),velz(i),
- eps[i],&press[i],&w_lorentz[i]);
+ eps[i],&press[i],
+ Bvecx(i),Bvecy(i),Bvecz(i),
+ &w_lorentz[i]);
}
@@ -1061,6 +1184,12 @@
# undef sx
# undef sy
# undef sz
+# undef Bconsx
+# undef Bconsy
+# undef Bconsz
+# undef Bvecx
+# undef Bvecy
+# undef Bvecz
return;
More information about the Commits
mailing list