<html>#2280: visualization notebook
<table style='border-spacing: 1ex 0pt; '>
<tr><td style='text-align:right'> Reporter:</td><td>Roland Haas</td></tr>
<tr><td style='text-align:right'> Status:</td><td>new</td></tr>
<tr><td style='text-align:right'>Milestone:</td><td></td></tr>
<tr><td style='text-align:right'> Version:</td><td></td></tr>
<tr><td style='text-align:right'> Type:</td><td>task</td></tr>
<tr><td style='text-align:right'> Priority:</td><td>major</td></tr>
<tr><td style='text-align:right'>Component:</td><td>Other</td></tr>
</table>
<p>Eric West and collaborator’s prepared one more Jupyter notebook-based tutorial, hosted here:</p>
<p><a data-is-external-link="true" href="https://github.com/EricJWest/ETKNotebooks/blob/master/VisualizingOutput-WaveMoL.ipynb" rel="nofollow">https://github.com/EricJWest/ETKNotebooks/blob/master/VisualizingOutput-WaveMoL.ipynb</a></p>
<p>According to Eric’s email:</p>
<blockquote>
<p>This one is on understanding and visualizing Cactus output files. So it's more about post-processing as opposed to Cactus itself. But the two are coupled. If you don't understand what Cactus is producing, and how to control it, you can't do the post-processing or visualization tasks that you want to do. So I try to explain a little about what Cactus is doing, the options you have, the structure of output files, and so on.</p>
<p>[…]</p>
<p>Two disclaimers: the tutorial does not address how to deal with Carpet output files, and it does not address how to handle output from multiple processors.</p>
</blockquote>
<p>keyword: documentation</p>
<p>--<br/>
Ticket URL: <a href='https://bitbucket.org/einsteintoolkit/tickets/issues/2280/visualization-notebook'>https://bitbucket.org/einsteintoolkit/tickets/issues/2280/visualization-notebook</a></p>
</html>