<html>#2282: gallery examples use low-order integration n Multipole
<table style='border-spacing: 1ex 0pt; '>
<tr><td style='text-align:right'> Reporter:</td><td>Roland Haas</td></tr>
<tr><td style='text-align:right'> Status:</td><td>new</td></tr>
<tr><td style='text-align:right'>Milestone:</td><td></td></tr>
<tr><td style='text-align:right'> Version:</td><td></td></tr>
<tr><td style='text-align:right'> Type:</td><td>enhancement</td></tr>
<tr><td style='text-align:right'> Priority:</td><td>minor</td></tr>
<tr><td style='text-align:right'>Component:</td><td>EinsteinToolkit website</td></tr>
</table>
<p>The gallery examples <a data-is-external-link="true" href="https://www.einsteintoolkit.org/gallery/bbh/index.html" rel="nofollow">https://www.einsteintoolkit.org/gallery/bbh/index.html</a> and <a data-is-external-link="true" href="https://www.einsteintoolkit.org/gallery/bns/index.html" rel="nofollow">https://www.einsteintoolkit.org/gallery/bns/index.html</a> extract waveform multipole moments using the <a data-is-external-link="true" href="https://bitbucket.org/einsteintoolkit/einsteinanalysis/src/master/Multipole/" rel="nofollow">Multipole</a> thorn. However the use Multipole’s integration on spheres to compute the modes defaults to just the “midpoint” rule which is only 1st order accurate. Instead we should use the “simpson” rule which is 4th order and quite robust.</p>
<p>--<br/>
Ticket URL: <a href='https://bitbucket.org/einsteintoolkit/tickets/issues/2282/gallery-examples-use-low-order-integration'>https://bitbucket.org/einsteintoolkit/tickets/issues/2282/gallery-examples-use-low-order-integration</a></p>
</html>