<html>#2282: gallery examples use low-order integration n Multipole
<table style='border-spacing: 1ex 0pt; '>
<tr><td style='text-align:right'> Reporter:</td><td>Roland Haas</td></tr>
<tr><td style='text-align:right'> Status:</td><td>open</td></tr>
<tr><td style='text-align:right'>Milestone:</td><td></td></tr>
<tr><td style='text-align:right'> Version:</td><td></td></tr>
<tr><td style='text-align:right'> Type:</td><td>enhancement</td></tr>
<tr><td style='text-align:right'> Priority:</td><td>minor</td></tr>
<tr><td style='text-align:right'>Component:</td><td>EinsteinToolkit website</td></tr>
</table>
<p>Comment (by Zach Etienne):</p>
<p>The midpoint rule yields errors that scale with the square of the grid spacing; that is, for sufficiently smooth functions, the error should decrease proportionally to 1/n^2, where n is the number of intervals. See, e.g., <a data-is-external-link="true" href="https://en.wikipedia.org/wiki/Riemann_sum" rel="nofollow">https://en.wikipedia.org/wiki/Riemann_sum</a> .</p>
<p></p>
<p>There are higher order midpoint rules, but they require n to be divisible by e.g., 4.</p>
<p>--<br/>
Ticket URL: <a href='https://bitbucket.org/einsteintoolkit/tickets/issues/2282/gallery-examples-use-low-order-integration'>https://bitbucket.org/einsteintoolkit/tickets/issues/2282/gallery-examples-use-low-order-integration</a></p>
</html>