
Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Consistency of Floating-Point Results using the Intel® Compiler

or

Why doesn’t my application always give the same answer?

Dr. Martyn J. Corden

David Kreitzer

Software Solutions Group

Intel Corporation

Introduction
Binary floating-point [FP] representations of most real numbers are inexact, and

there is an inherent uncertainty in the result of most calculations involving floating-

point numbers. Programmers of floating-point applications typically have the

following objectives:

 Accuracy

o Produce results that are “close” to the result of the exact calculation

 Usually measured in fractional error, or sometimes “units in the

last place” (ulp).

 Reproducibility

o Produce consistent results:

 From one run to the next;

 From one set of build options to another;

 From one compiler to another

 From one processor or operating system to another

 Performance

o Produce an application that runs as fast as possible

These objectives usually conflict! However, good programming practices and

judicious use of compiler options allow you to control the tradeoffs.

For example, it is sometimes useful to have a degree of reproducibility that goes

beyond the inherent accuracy of a computation. Some software quality assurance

tests may require close, or even bit-for-bit, agreement between results before and

after software changes, even though the mathematical uncertainty in the result of

the computation may be considerably larger. The right compiler options can deliver

consistent, closely reproducible results while preserving good (though not optimal)

performance.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Floating Point Semantics
The Intel® Compiler implements a model for floating point semantics based on the

one introduced by Microsoft. 1 A compiler switch (/fp: for Windows*, -fp-model for

Linux* or Mac OS* X) lets you choose the floating point semantics at a coarse

granularity. It lets you choose the compiler rules for:

 Value safety

 Floating-point expression evaluation

 Precise floating-point exceptions

 Floating-point contractions

 Floating-point unit (FPU) environment access

These map to the following arguments of the /fp: (-fp-model) switch2:

 precise allows value-safe optimizations only

 source specify the intermediate precision used for

double floating point expression evaluation

extended

 except enables strict floating point exception semantics

 strict enables access to the FPU environment

disables floating point contractions

such as fused multiply-add (fma) instructions

implies “precise” and “except”

 fast [=1] allows value-unsafe optimizations

(default) compiler chooses precision for expression evaluation

 Floating-point exception semantics not enforced

 Access to the FPU environment not allowed

 Floating-point contractions are allowed

 fast=2 some additional approximations allowed

This switch supersedes a variety of switches that were implemented in older Intel

compilers, such as /Op, /QIPF-fltacc, /flt-consistency (-mp, -IPF-fltacc, -flt-consistency).

The recommendation for obtaining floating-point values that are compliant with

ANSI / IEEE standards for C++ and Fortran is:

/fp:precise /fp:source (Windows)

-fp-model precise –fp-model source (Linux or Mac OS X)

1 Microsoft* Visual C++* Floating-Point Optimization

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx

2 In general, the Windows form of a switch is given first, followed by the form for Linux and Mac OS X

in parentheses.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Value Safety

In SAFE (precise) mode, the compiler may not make any transformations that could

affect the result. For example, the following is prohibited:

(x + y) + z  x + (y + z)

since general reassociation is not value safe. When the order of floating-point
operations is changed, (reassociation), different intermediate results get rounded
to the nearest floating point representation, and this can lead to slight variations
in the final result.

UNSAFE (fast) mode is the default. The variations implied by “unsafe” are usually
very tiny; however, their impact on the final result of a longer calculation may be
amplified if the algorithm involves cancellations (small differences of large
numbers), as in the first example below. In such circumstances, the variations in
the final result reflect the real uncertainty in the result due to the finite precision of
the calculation.

VERY UNSAFE (fast=2) mode enables riskier transformations. For example, this
might enable expansions that could overflow at the extreme limit of the allowed
exponent range.

More Examples that are disabled by /fp:precise (-fp-model precise)

 reassociation e.g. a + b + c  a + (b + c)

 zero folding e.g. X+0  X, X*0  0

 multiply by reciprocal e.g. A/B  A*(1/B)

 approximate square root

 abrupt underflow (flush-to-zero)

 drop precision of RHS to that of LHS

 etc

Note, however, that fused-multiply-add contractions1 are still permitted unless they

are explicitly disabled or /fp:strict (-fp-model strict) is specified.

More about Reassociation

Addition and multiplication are associative:

 a + b + c = (a+b) + c = a + (b+c)

 (a*b) * c = a * (b*c)

1 Intel® Itanium®-based processors support multiplication followed by an addition in a single instruction.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

These transformed expressions are equivalent mathematically, but they are not

equivalent in finite precision arithmetic. The same is true for other algebraic

identities such as a*b + a*c = a * (b+c)

Examples of higher level optimizing transformations that involve reassociation are

loop interchange and the vectorization of reduction operations by the use of partial

sums (see the section on Reductions below).

The ANSI C and C++ language standards do not permit reassociation by the compiler;

even in the absence of parentheses, floating-point expressions are to be evaluated

from left to right. Reassociation by the Intel compiler may be disabled in its entirety

by the switch /fp:precise (-fp-model precise). This also disables other value-unsafe

optimizations, and may have a significant impact on performance at higher

optimization levels.

The ANSI Fortran standard is less restrictive than the C standard: it requires the

compiler to respect the order of evaluation specified by parentheses, but otherwise

allows the compiler to reorder expressions as it sees fit. The Intel Fortran compiler

has therefore implemented a corresponding switch, /assume:protect_parens

(-assume protect_parens), that results in standard-conforming behavior for

reassociation, with considerably less impact on performance than /fp:precise (-fp-

model precise). This switch does not affect any value-unsafe optimizations other

than reassociation. It is not available for the C/C++ compiler.

Example from a Fortran application

The application gave different results when built with optimization compared to

without optimization, and the residuals increased by an order of magnitude. The root

cause was traced to source expressions of the form:

 A(I) + B + TOL

where TOL is very small and positive and A(I) and B may be large. With optimization,

the compiler prefers to evaluate this as

 A(I) + (B + TOL)

because the constant expression (B+TOL) can be evaluated a single time before

entry to the loop over I. However, the intent of the code was to ensure that the

expression remained positive definite in the case that A(I)  -B. When TOL is added

directly to B, its contribution is essentially rounded away due to the finite precision,

and it no longer fulfills its role of keeping the expression positive-definite when A(I)

and B cancel.

The simplest solution was to recompile the affected source files with the switch

–fp-model precise, to disable reassociation and evaluate expressions in the order in

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

which they are written. A more targeted solution, with less potential impact on

performance, was to change the expression in the source code to

 (A(I) + B) + TOL

to more clearly express the intent of the programmer, and to compile with the

option -assume protect_parens.

Example from WRF1 (Weather Research and Forecasting model)

Slightly different results were observed when the same application was run on

different numbers of processors under MPI (Message Passing Interface).

This was because loop bounds, and hence data alignment, changed when the

problem decomposition changed to match the different number of MPI processes.

This in turn changed which loop iterations were in the vectorized loop kernel and

which formed part of the loop prologue or epilogue. Different generated code in the

prologue or epilogue compared to the vectorized kernel can give slightly different

results for the same data.

The solution was to compile with –fp-model precise. This causes the compiler to

generate consistent code and math library calls for the loop prologue, epilogue and

kernel. Sometimes, (not always), this may prevent the loop from being vectorized.

Reductions

Parallel implementations of reduction loops (such as dot products) make use of

partial sums, which implies reassociation. They are therefore not value-safe.

The following is a schematic example of serial and parallel implementations of a

floating point reduction loop:

float Sum(const float A[], int n) float Sum(const float A[], int n)

{ {

 float sum=0; float sum=0,sum1=0,sum2=0,sum3=0;

 for (int i=0; i<n; i++) for (i=0; i<n4; i+=4) {

 sum = sum + A[i]; sum = sum + A[i];

 sum1 = sum1 + A[i+1];

 sum2 = sum2 + A[i+2];

 sum3 = sum3 + A[i+3];

 }

 sum = sum + sum1 + sum2 + sum3;

 for (; i<n; i++) sum = sum + A[i];

 return sum; return sum;

} }

1 See http://www.wrf-model.org

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

In the second implementation, the four partial sums may be computed in parallel,

either by using SIMD instructions (eg as generated by the compiler’s automatic

vectorizer), or by a separate thread for each sum (e.g. as generated by automatic

parallelization). This can result in a large increase in performance; however, the

changed order in which the elements of A are added to give the final sum results in

different rounding errors, and thus may yield a slightly different final result.

Because of this, the vectorization or automatic parallelization of reductions is

disabled by /fp:precise (-fp-model precise).

Parallel reductions in OpenMP* are mandated by the OpenMP directive, and can not

be disabled by /fp:precise (-fp-model precise). They are value-unsafe, and remain the

responsibility of the programmer. Likewise, MPI* reductions involving calls to an MPI

library are beyond the control of the compiler, and might not be value-safe. Changes

in the number of OpenMP threads or in the number of MPI processes are likely to

cause small variations in results. In some cases, the order of operations may change

between consecutive executions of the same binary.

Second Example from WRF

Slightly different results were observed when re-running the same (non-threaded)

binary on the same data on the same processor.

This was caused by variations in the starting address and alignment of the global

stack, resulting from events external to the program. The resulting change in local

stack alignment led to changes in which loop iterations were assigned to the loop

prologue or epilogue, and which to the vectorized loop kernel. This in turn led to

changes in the order of operations for vectorized reductions (i.e., reassociation).

The solution was to build with –fp-model precise, which disabled the vectorization of

reductions.

Starting with version 11 of the Intel compiler, the starting address of the global

stack is aligned to a cache line boundary. This avoids the run-to-run variations

described above, even when building with –fp-model fast, unless run-to-run

variations in stack alignment occur due to events internal to the application. (This

might occur if a variable length string is allocated on the stack to contain the current

date and time, for example).1

1 Dynamic variations in heap alignment can lead to variations in floating-point results in a similar

manner. These typically arise from memory allocations that depend on the external environment, and

can also be avoided by building with /fp:precise (-fp-model precise).

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Abrupt Underflow or Flush-To-Zero (FTZ)

Denormalized numbers1 extend slightly the allowed range of floating point

exponents, but computations involving them take substantially longer than those

that involve only normal numbers. By default on IA-32 and Intel 64 architectures,

when the result of a floating-point calculation using SSE instructions would have

been a denormals number, it is instead set to zero in hardware. When /fp:precise

(-fp-model precise) is specified, denormals results are preserved for value safety.

The /fp: (-fp-model) settings may be overridden for the entire program by compiling

the main function or routine with the switch /Qftz (-ftz) or /Qftz- (-no-ftz), which

sets or unsets the hardware flush-to-zero mode in the floating point control

register2. The default setting for /fp:fast (-fp-model fast) on IA-32 and Intel 64

architectures is –ftz for optimization levels of –O1 and above. The default setting for

the IA-64 architecture is –ftz only at –O3. The –ftz switch has no effect on x87

arithmetic, which has no flush-to-zero hardware. For the 11.1 compiler, x87

arithmetic instructions are usually generated only when compiling for older IA-32

processors without SSE2 support using the option /arch:ia32.

Floating-Point Expression Evaluation

Example: a = (b + c) + d

There are four possibilities for rounding of the intermediate result (b+c),

corresponding to values of FLT_EVAL_METHOD in C99:

Evaluation Method /fp: (-fp-model) Language FLT_EVAL_METHOD

Indeterminate fast C/C++/Fortran -1

Use source precision source C/C++/Fortran 0

Use double precision double C/C++ 1

Use long double precision extended C/C++ 2

If /fp:precise (-fp-model precise) is specified but the evaluation method is not, the

evaluation method defaults to source precision, except in the special case of X87

code generation by the C/C++ compiler, for example when explicitly targeting an

older IA-32 processor3 that does not support SSE2, using the switch /arch:IA32

1 A short discussion of denormal numbers may be found in the Floating Point Operation section of the

Intel Compiler User and Reference Guides.
2 The switch /Qftz (-ftz) allows denormals results to be flushed to zero. It does not guarantee that

they will always be flushed to zero.
3 Such as an Intel Pentium® III processor.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

(-mia32). In this special case, the evaluation method defaults to double on Windows

and to extended on Linux1.

If an evaluation method of source, double or extended is specified but no value

safety option is given, the latter defaults to /fp:precise (-fp-model precise).

The method of expression evaluation can impact performance, accuracy,

reproducibility and portability! In particular, selection of an evaluation method that

implies repeated conversions between representations of different precision can

significantly impact performance.

The Floating-Point Unit (FPU) Environment

The floating-point environment2 consists of the floating-point control word settings

and status flags. The control word settings govern:

 the FP rounding mode (nearest, toward +∞, toward -∞, toward 0)

 FP exception masks for inexact, underflow, overflow, divide by zero,

denormals and invalid exceptions

 Flush-to-zero (FTZ), Denormals-are-zero (DAZ)

 For x873 only: precision control (single, double, extended)

o Changing this may have unintended consequences!

There is a status flag corresponding to each exception mask.

Programmer access to the FPU environment is disallowed by default.

 the compiler assumes the default FPU environment:

o round-to-nearest

o all FP exceptions are masked

o Flush-to-zero (FTZ) and Denormals-as-zero (DAZ) are disabled

 the compiler assumes the program will not read FP status flags

If the user might explicitly change the default FPU environment, e.g. by a call to the

runtime library that modifies the FP control word, the compiler must be informed by

setting the FPU environment access mode. The access mode may only be enabled in

value-safe modes, by either

 /fp:strict (-fp-model strict) or

 #pragma STDC FENV_ACCESS ON (C/C++ only)

In this case, the compiler treats the FPU control settings as unknown. It will preserve

floating-point status flags and disable certain optimizations such as the evaluation of

1
 The switch –mia32 is not supported on Mac OS* X, where all Intel processors support instructions up

to SSE3. The evaluation method therefore defaults to source precision with –fp-model precise.
2 For more detail, see the Intel Compiler User and Reference Guides, under Floating-point

Operations/Understanding Floating-point Operations/Floating-point Environment.
3
 There are two separate control words for SSE and x87 floating-point arithmetic. From the 11.1

compiler onwards, the x87 FP control word should not normally be of concern unless the /arch:IA32 (-

mia32) option for the support of older processors is specified.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

constant expressions at compile time, speculation of floating point operations and

others1.

Precise Floating-Point Exceptions

By default, (precise exceptions disabled), code may be reordered by the compiler

during optimization, and so floating-point exceptions might not occur at the same

time and place as they would if the code were executed exactly as written in the

source. This effect is particularly important for x87 arithmetic where exceptions are

not signaled as promptly as for SSE.

Precise FP exceptions may be enabled by one of:

 /fp:strict (-fp-model strict)

 /fp:except (-fp-model except)

 #pragma float_control(except,on) (C and C++ only)

When enabled, the compiler must account for the possibility that any FP operation

might throw an exception. Optimizations such as speculation of floating-point

operations are disabled, as these might result in exceptions coming from a branch

that would not otherwise be executed. This may prevent the vectorization of certain

loops containing “if” statements, for example. The compiler inserts fwait after other

x87 instructions, to ensure that any floating-point exception is synchronized with

the instruction causing it. Precise FP exceptions may only be enabled in value-safe

mode, i.e. with /fp:precise (-fp-model precise) or #pragma float_control(precise,on).

Value-safety is already implied by /fp:strict (-fp-model strict).

Note that enabling precise FP exceptions does not unmask FP exceptions. That must

be done separately, e.g. with a function call, or (for Fortran only) with the command

line switch /fpe:0 (-fpe0) or /fpe-all:0 (-fpe-all0).

Example of precise exceptions:

double x, zero = 0.;

 feenableexcept(FE_DIVBYZERO);

 for(int i = 0; i < 20; i++)

 for(int j = 0; j < 20; j++)

 x = zero ? (1./zero) : zero;

 …..

1
 Other optimizations that are disabled:

Partial redundancy elimination

Common subexpression elimination

Dead code elimination

Conditional transform, i.e. if (c) x = y; else x = z;  x = (c) ? y : z;

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

A floating point exception occurred, despite the explicit protection, because the

calculation of (1./zero) gets hoisted out of the loop by the optimizer, so that it is only

evaluated once, but the branch implied by “?” remains in the loop.

The optimization leading to the premature exception may be disabled in one of the

following ways:

 icc –fp-model precise –fp-model except (or icc –fp-model strict)

This disables all optimizations that could affect FP exception semantics.

 icc –fp-speculation safe

disables just speculation where this could cause an exception.

 #pragma float_control(except on|off) around the affected code block.

Floating Point Contractions

This refers primarily to the generation of fused multiply-add (FMA) instructions on

the IA-64 architecture, which is enabled by default. The compiler may generate a

single FMA instruction for a combined multiply and add operation, e.g. a = b*c + d.

This leads to faster, slightly more accurate calculations, but results may differ in the

last bit from separate multiply and add instructions.

Floating point contractions may be disabled by one of the following:

 /fp:strict (-fp-model strict)

 #pragma float_control(fma,off)

 /Qfma- (-no-fma) (this overrides the /fp or –fp-model setting)

When disabled, the compiler must generate separate multiply and add instructions,

with rounding of the intermediate result.

Typical Performance Impact of /fp:precise /fp:source

(-fp-model precise –fp-model source)

The options /fp:precise /fp:source /Qftz (-fp-model precise –fp-model source –ftz)

are recommended to improve floating point reproducibility while limiting

performance impact, for typical applications where the preservation of denormalized

numbers is not important. The switch /fp:precise (-fp-model precise) disables certain

optimizations, and therefore tends to reduce application performance. The impact

may vary significantly from one application to another, but is illustrated by

performance estimates using the SPECCPU2000fp benchmark suite with base

options:

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Architecture Performance

Reduction

Compiler Options

IA-64 ~20% -O3

Intel 64 ~1% -O2

Intel 64 ~15% -fast (implies –O3)

IA-32 using SSE ~1% -O2 –msse2

IA-32 Windows using x87 ~5-10% /O2 /arch:IA32

IA-32 Linux using x87 ~20-50% -O2 –mia32

-fp-model precise –fp-model source –ftz or equivalent used in each case.

The impact is larger on applications built with –O3 because many high level loop

optimizations involve the reordering of operations. The impact on applications built

for IA-32 architecture using x87 instructions is larger due to the many conversions

between source precision and double precision (Windows) or extended precision

(Linux). Applications built with the Intel Compiler 11.1 for IA-32 architecture do not

usually generate x87 instructions unless they are built with /arch:IA32 (-mia32) to

target older processors1 without support for SSE2 instructions.

Additional Remarks

The options /fp:precise /fp:source (-fp-model precise –fp-model source) should also

be used for debug builds at /Od (-O0). In Intel compiler versions prior to 11.1, /Od (-

O0) implied /Op (-mp), which could result in the generation of x87 instructions, even

on Intel 64 architecture, unless overridden with /fp:source (-fp-model source).

From the 11.0 compiler onwards, loops containing math functions such as log() or

sin() are not vectorized by default with /fp:precise (-fp-model precise), since this

would result in a function call to a different math library that returns different,

slightly less accurate results than the standard math library (see following section).

The switch /Qfast-transcendentals (-fast-transcendentals) may be used to restore

the 10.1 compiler behavior and re-enable vectorization.

1 Such as Intel® Pentium® III and older processors.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Math Library Functions

As yet, no official standard specifies the accuracy of mathematical functions1 such as

log() or sin(), or how the results should be rounded. Different implementations of

these functions may not have the same accuracy or be rounded in the same way.

The Intel compiler may implement math functions in the following ways:

 By standard calls to the optimized Intel math library libm (on Windows) or

libimf (on Linux or Mac OS X). These calls are mostly compatible with math

functions in the Microsoft C runtime library libc (Windows) or the GNU library

libm (Linux or Mac OS X).

 By generating inline code that can be optimized in later stages of the

compilation

 By architecture-specific calling sequences (e.g. by passing arguments via SIMD

registers on IA-32 processors with support for SSE2)

 By calls to the short vector math library (libsvml) for loops that can be

vectorized

For the 11.0 and later compilers, calls may be limited to the first of these methods

by the switch /fp:precise (-fp-model precise) or by the more specific switches /Qfast-

transcendentals- (-no-fast-transcendentals). This makes the calling sequence

generated by the compiler consistent between different optimization levels or

different compiler versions. However, it does not ensure consistent behavior of the

library function itself. The value returned by a math library function may vary:

 Between one compiler release and another, due to algorithmic and

optimization improvements

 Between one run-time processor and another. The math libraries contain

function implementations that are optimized for different processors. The

code automatically detects what type of processor it is running on, and

selects the most appropriate implementation. For example, a function

involving complex arithmetic might have implementations both with and

without SSE3 instructions. The implementation that used SSE3 instructions

would be invoked only on a processor that was known to support these.

The variations in the results of math functions discussed above are small. The

expected accuracy, about 0.55 units in the last place (ulp) for the standard math

library and less than 4 ulp for the short vector math library used for vectorized loops,

1 With the exception of division and square root functions.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

is maintained both for different compiler releases and for implementations optimized

for different processors.

There is no direct way to enforce bit-for-bit consistency between math libraries

coming from different compiler releases. It may be possible to use the runtime

library from the higher compiler version in conjunction with both compilers when

checking for consistency of compiler generated code.

There is currently no compiler switch that will override the processor dependency of

results returned by math library functions. Such an option may be provided in a

future compiler release. If so, it will be at some cost in performance, since it will need

to call less optimized functions that can execute on a wide range of processors.

Adoption of a formal standard with specified rounding for the results of math

functions would encourage further improvements in floating-point consistency,

including between different architectures, but would likely come at an additional cost

in performance.

Bottom Line

Compiler options let you control the tradeoffs between accuracy, reproducibility and

performance. Use /fp:precise /fp:source (Windows) or –fp-model precise –fp-model

source (Linux or Mac OS X) to improve the consistency and reproducibility of

floating-point results while limiting the impact on performance1.

Further Information

• Microsoft Visual C++* Floating-Point Optimization

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx

• The Intel® C++ and Fortran Compiler User and Reference Guides,

 “Floating Point Operations” section.

• “Floating Point Calculations and the ANSI C, C++ and Fortran Standard”

http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm

or see the list at http://www.intel.com/cd/software/products/asmo-

na/eng/330130.htm

• Goldberg, David: "What Every Computer Scientist Should Know About

Floating-Point Arithmetic“ Computing Surveys, March 1991, pg. 203

1
 /fp:source implies also /fp:precise

http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm
http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm
http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Intel, the Intel logo, Pentium, and Itanium are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance
of systems or components they are considering purchasing. For more information on performance tests and on the performance
of Intel products, visit Intel http://www.intel.com/performance/resources/limits.htm
*Other names and brands may be claimed as the property of others. The linked sites are not under the control of Intel and Intel
is not responsible for the content of any linked site or any link contained in a linked site. Intel reserves the right to terminate any
link or linking program at any time. Intel does not endorse companies or products to which it links and reserves the right to note as
such on its web pages. If you decide to access any of the third party sites linked to this Site, you do this entirely at your own risk.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

Copyright © 2009, Intel Corporation. All Rights Reserved.

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Appendix

Quick summary of primary floating-point switches:

Primary Switches Description

/fp:keyword

-fp-model keyword

fast[=1|2], precise, source, except, strict

 [double, extended - C++ only]

Controls floating point semantics

/Qftz[-] -[no-]ftz Flushes denormal results to Zero

Other switches

/Qfast-transcendentals[-]

-[no-]fast-transcendentals

Enable[Disable] use of fast math functions

/Qprec-div[-] -[no-]prec-div Improves precision of floating point divides

/Qprec-sqrt[-] -[no-]prec-sqrt Improves precision of square root calculations

/Qfp-speculation keyword

-fp-speculation keyword

fast, safe, strict, off

floating point speculation control

/fpe:0 -fpe0 Unmask floating point exceptions (Fortran only) and

disable generation of denormalized numbers

/Qfp-port -fp-port Round floating point results to user precision

/Qprec -mp1 More consistent comparisons & transcendentals

/Op[-] -mp [-nofltconsistency] Deprecated; use /fp:source etc instead

/Qfma[-] -[no-]fma Enable[Disable] use of fma instructions on IA-64

/Qfp-relaxed -fp-relaxed Same as -no-prec-div –no-prec-sqrt on IA-64

