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Introduction 
Binary floating-point [FP] representations of most real numbers are inexact, and 

there is an inherent uncertainty in the result of most calculations involving floating-

point numbers. Programmers of floating-point applications typically have the 

following objectives: 

 Accuracy 

o Produce results that are “close” to the result of the exact calculation 

 Usually measured in fractional error, or sometimes “units in the 

last place” (ulp). 

 Reproducibility 

o Produce consistent results: 

 From one run to the next; 

 From one set of build options to another; 

 From one compiler to another 

 From one processor or operating system to another 

 Performance 

o Produce an application that runs as fast as possible 

 

These objectives usually conflict! However, good programming practices and 

judicious use of compiler options allow you to control the tradeoffs. 

 

For example, it is sometimes useful to have a degree of reproducibility that goes 

beyond the inherent accuracy of a computation. Some software quality assurance 

tests may require close, or even bit-for-bit, agreement between results before and 

after software changes, even though the mathematical uncertainty in the result of 

the computation may be considerably larger. The right compiler options can deliver 

consistent, closely reproducible results while preserving good (though not optimal) 

performance. 
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Floating Point Semantics 
The Intel® Compiler implements a model for floating point semantics based on the 

one introduced by Microsoft. 1  A compiler switch (/fp: for Windows*, -fp-model for 

Linux* or Mac OS* X) lets you choose the floating point semantics at a coarse 

granularity. It lets you choose the compiler rules for: 

 Value safety 

 Floating-point expression evaluation 

 Precise floating-point exceptions 

 Floating-point contractions 

 Floating-point unit (FPU) environment access 

 

These map to the following arguments of the /fp: (-fp-model) switch2: 

 precise  allows value-safe optimizations only 

 source   specify the intermediate precision used for  

double   floating point expression evaluation 

extended 

 except   enables strict floating point exception semantics 

 strict   enables access to the FPU environment 

disables floating point contractions                                

such as fused multiply-add (fma) instructions 

implies “precise” and “except” 

 fast [=1]    allows value-unsafe optimizations  

(default)  compiler chooses precision for expression evaluation 

   Floating-point exception semantics not enforced 

   Access to the FPU environment not allowed 

   Floating-point contractions are allowed 

 fast=2   some additional approximations allowed 

 

This switch supersedes a variety of switches that were implemented in older Intel 

compilers, such as /Op, /QIPF-fltacc, /flt-consistency (-mp, -IPF-fltacc, -flt-consistency). 

 

The recommendation for obtaining floating-point values that are compliant with 

ANSI / IEEE standards for C++ and Fortran is: 

/fp:precise  /fp:source   (Windows) 

-fp-model precise –fp-model source  (Linux or Mac OS X) 

    

 

                                                 
1 Microsoft* Visual C++* Floating-Point Optimization 

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx 

 
2 In general, the Windows form of a switch is given first, followed by the form for Linux and Mac OS X 

in parentheses. 
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Value Safety  

 

In SAFE (precise) mode, the compiler may not make any transformations that could 

affect the result. For example, the following is prohibited: 
 

(x + y) + z    x + (y + z) 
 
since general reassociation is not value safe. When the order of floating-point 
operations is changed, (reassociation), different intermediate results get rounded 
to the nearest floating point representation, and this can lead to slight variations 
in the final result. 
 
UNSAFE (fast) mode is the default. The variations implied by “unsafe” are usually 
very tiny; however, their impact on the final result of a longer calculation may be 
amplified if the algorithm involves cancellations (small differences of large 
numbers), as in the first example below. In such circumstances, the variations in 
the final result reflect the real uncertainty in the result due to the finite precision of 
the calculation. 
 
VERY UNSAFE (fast=2) mode enables riskier transformations. For example, this 
might enable expansions that could overflow at the extreme limit of the allowed 
exponent range. 

More Examples that are disabled by /fp:precise (-fp-model precise) 

 

 reassociation   e.g. a + b + c  a + (b + c) 

 zero folding   e.g. X+0  X,     X*0  0 

 multiply by reciprocal e.g. A/B   A*(1/B) 

 approximate square root 

 abrupt underflow (flush-to-zero) 

 drop precision of RHS to that of LHS 

 etc 

 

Note, however, that fused-multiply-add contractions1 are still permitted unless they 

are explicitly disabled or /fp:strict (-fp-model strict) is specified. 

More about Reassociation 

 

Addition and multiplication are associative: 

 a + b + c = (a+b) + c = a + (b+c) 

            (a*b) * c = a * (b*c) 

                                                 
1 Intel® Itanium®-based processors support multiplication followed by an addition in a single instruction.  
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These transformed expressions are equivalent mathematically, but they are not 

equivalent in finite precision arithmetic. The same is true for other algebraic 

identities such as    a*b + a*c = a * (b+c) 

Examples of higher level optimizing transformations that involve reassociation are 

loop interchange and the vectorization of reduction operations by the use of partial 

sums (see the section on Reductions below). 

 

The ANSI C and C++ language standards do not permit reassociation by the compiler; 

even in the absence of parentheses, floating-point expressions are to be evaluated 

from left to right. Reassociation by the Intel compiler may be disabled in its entirety 

by the switch /fp:precise (-fp-model precise).  This also disables other value-unsafe 

optimizations, and may have a significant impact on performance at higher 

optimization levels. 

 

The ANSI Fortran standard is less restrictive than the C standard: it requires the 

compiler to respect the order of evaluation specified by parentheses, but otherwise 

allows the compiler to reorder expressions as it sees fit. The Intel Fortran compiler 

has therefore implemented a corresponding switch, /assume:protect_parens             

(-assume protect_parens), that results in standard-conforming behavior for 

reassociation, with considerably less impact on performance than /fp:precise (-fp-

model precise). This switch does not affect any value-unsafe optimizations other 

than reassociation. It is not available for the C/C++ compiler. 

Example from a Fortran application 

 

The application gave different results when built with optimization compared to 

without optimization, and the residuals increased by an order of magnitude. The root 

cause was traced to source expressions of the form: 

  A(I) + B + TOL 

where TOL is very small and positive and A(I) and B may be large. With optimization, 

the compiler prefers to evaluate this as 

  A(I) + (B + TOL) 

because the constant expression (B+TOL) can be evaluated a single time before 

entry to the loop over I.  However, the intent of the code was to ensure that the 

expression remained positive definite in the case that A(I)  -B. When TOL is added 

directly to B, its contribution is essentially rounded away due to the finite precision, 

and it no longer fulfills its role of keeping the expression positive-definite when A(I) 

and B cancel. 

 

The simplest solution was to recompile the affected source files with the switch           

–fp-model precise, to disable reassociation and evaluate expressions in the order in 
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which they are written. A more targeted solution, with less potential impact on 

performance, was to change the expression in the source code to 

  (A(I) + B) + TOL 

to more clearly express the intent of the programmer, and to compile with the 

option  -assume protect_parens. 

Example from WRF1 (Weather Research and Forecasting model) 

 

Slightly different results were observed when the same application was run on 

different numbers of processors under MPI (Message Passing Interface).  

This was because loop bounds, and hence data alignment, changed when the 

problem decomposition changed to match the different number of MPI processes. 

This in turn changed which loop iterations were in the vectorized loop kernel and 

which formed part of the loop prologue or epilogue. Different generated code in the 

prologue or epilogue compared to the vectorized kernel can give slightly different 

results for the same data. 

 

The solution was to compile with –fp-model precise. This causes the compiler to 

generate consistent code and math library calls for the loop prologue, epilogue and 

kernel. Sometimes, (not always), this may prevent the loop from being vectorized. 

Reductions 

 

Parallel implementations of reduction loops (such as dot products) make use of 

partial sums, which implies reassociation. They are therefore not value-safe. 

The following is a schematic example of serial and parallel implementations of a 

floating point reduction loop: 

 

float Sum(const float A[], int n )  float Sum( const float A[], int n ) 

{      { 

    float sum=0;       float sum=0,sum1=0,sum2=0,sum3=0; 

    for (int i=0; i<n; i++)      for (i=0; i<n4; i+=4) { 

        sum = sum + A[i];          sum  = sum  + A[i]; 

                    sum1 = sum1 + A[i+1]; 

                    sum2 = sum2 + A[i+2]; 

                    sum3 = sum3 + A[i+3]; 

          } 

         sum = sum + sum1 + sum2 + sum3; 

         for (; i<n; i++) sum = sum + A[i]; 

    return sum;        return sum;  

}         } 

                                                 
1 See http://www.wrf-model.org 
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In the second implementation, the four partial sums may be computed in parallel, 

either by using SIMD instructions (eg as generated by the compiler’s automatic 

vectorizer), or by a separate thread for each sum (e.g. as generated by automatic 

parallelization). This can result in a large increase in performance; however, the 

changed order in which the elements of A are added to give the final sum results in 

different rounding errors, and thus may yield a slightly different final result.  

Because of this, the vectorization or automatic parallelization of reductions is 

disabled by /fp:precise (-fp-model precise). 

 

Parallel reductions in OpenMP* are mandated by the OpenMP directive, and can not 

be disabled by /fp:precise (-fp-model precise). They are value-unsafe, and remain the 

responsibility of the programmer. Likewise, MPI* reductions involving calls to an MPI 

library are beyond the control of the compiler, and might not be value-safe. Changes 

in the number of OpenMP threads or in the number of MPI processes are likely to 

cause small variations in results. In some cases, the order of operations may change 

between consecutive executions of the same binary. 

 

Second Example from WRF 

 

Slightly different results were observed when re-running the same (non-threaded) 

binary on the same data on the same processor. 

 

This was caused by variations in the starting address and alignment of the global 

stack, resulting from events external to the program. The resulting change in local 

stack alignment led to changes in which loop iterations were assigned to the loop 

prologue or epilogue, and which to the vectorized loop kernel. This in turn led to 

changes in the order of operations for vectorized reductions (i.e., reassociation). 

 

The solution was to build with –fp-model precise, which disabled the vectorization of 

reductions.  

 

Starting with version 11 of the Intel compiler, the starting address of the global 

stack is aligned to a cache line boundary. This avoids the run-to-run variations 

described above, even when building with –fp-model fast, unless run-to-run 

variations in stack alignment occur due to events internal to the application. (This 

might occur if a variable length string is allocated on the stack to contain the current 

date and time, for example).1 

                                                 
1 Dynamic variations in heap alignment can lead to variations in floating-point results in a similar 

manner. These typically arise from memory allocations that depend on the external environment, and 

can also be avoided by building with /fp:precise (-fp-model precise). 
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Abrupt Underflow or Flush-To-Zero (FTZ) 

 

Denormalized numbers1 extend slightly the allowed range of floating point 

exponents, but computations involving them take substantially longer than those 

that involve only normal numbers. By default on IA-32 and Intel 64 architectures, 

when the result of a floating-point calculation using SSE instructions would have 

been a denormals number, it is instead set to zero in hardware. When /fp:precise      

(-fp-model precise) is specified, denormals results are preserved for value safety.  

The /fp: (-fp-model) settings may be overridden for the entire program by compiling 

the main function or routine with the switch /Qftz (-ftz)  or /Qftz- (-no-ftz), which 

sets or unsets the hardware flush-to-zero mode in the floating point control 

register2.  The default setting for /fp:fast (-fp-model fast) on IA-32 and Intel 64 

architectures is –ftz for optimization levels of –O1 and above. The default setting for 

the IA-64 architecture is –ftz only at –O3. The –ftz switch has no effect on x87 

arithmetic, which has no flush-to-zero hardware. For the 11.1 compiler, x87 

arithmetic instructions are usually generated only when compiling for older IA-32 

processors without SSE2 support using the option /arch:ia32. 

Floating-Point Expression Evaluation 
 

Example:  a = (b + c) + d 

 

There are four possibilities for rounding of the intermediate result (b+c), 

corresponding to values of FLT_EVAL_METHOD in C99: 

     

Evaluation Method /fp: (-fp-model) Language FLT_EVAL_METHOD 

Indeterminate fast C/C++/Fortran -1 

Use source precision           source C/C++/Fortran 0 

Use double precision double C/C++ 1 

Use long double precision   extended C/C++ 2 

 

If /fp:precise (-fp-model precise) is specified but the evaluation method is not, the 

evaluation method defaults to source precision, except in the special case of X87 

code generation by the C/C++ compiler, for example when explicitly targeting an 

older IA-32 processor3 that does not support SSE2, using the switch  /arch:IA32       

                                                 
1  A short discussion of denormal numbers may be found in the Floating Point Operation section of the 

Intel Compiler User and Reference Guides. 
2 The switch /Qftz (-ftz)  allows denormals results to be flushed to zero. It does not guarantee that 

they will always be flushed to zero.  
3 Such as an Intel Pentium® III processor. 
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(-mia32). In this special case, the evaluation method defaults to double on Windows 

and to extended on Linux1. 

If an evaluation method of source, double or extended is specified but no value 

safety option is given, the latter defaults to /fp:precise (-fp-model precise). 

The method of expression evaluation can impact performance, accuracy, 

reproducibility and portability! In particular, selection of an evaluation method that 

implies repeated conversions between representations of different precision can 

significantly impact performance. 

The Floating-Point Unit (FPU) Environment 

The floating-point environment2 consists of the floating-point control word settings 

and status flags.  The control word settings govern: 

 the FP rounding mode (nearest, toward +∞, toward -∞, toward 0) 

 FP exception masks for inexact, underflow, overflow, divide by zero, 

denormals and invalid exceptions 

 Flush-to-zero (FTZ), Denormals-are-zero (DAZ) 

 For x873 only:        precision control  (single, double, extended) 

o Changing this may have unintended consequences! 

There is a status flag corresponding to each exception mask. 
 

Programmer access to the FPU environment is disallowed by default. 

 the compiler assumes the default FPU environment: 

o round-to-nearest 

o all FP exceptions are masked 

o Flush-to-zero (FTZ) and Denormals-as-zero (DAZ) are disabled 

 the compiler assumes the program will not read FP status flags 

 

If the user might explicitly change the default FPU environment, e.g. by a call to the 

runtime library that modifies the FP control word, the compiler must be informed by 

setting the FPU environment access mode. The access mode may only be enabled in 

value-safe modes, by either 

 /fp:strict   (-fp-model strict)                   or 

 #pragma STDC FENV_ACCESS ON        (C/C++ only) 

In this case, the compiler treats the FPU control settings as unknown. It will preserve 

floating-point status flags and disable certain optimizations such as the evaluation of 

                                                 
1
 The switch –mia32 is not supported on Mac OS* X, where all Intel processors support instructions up 

to SSE3. The evaluation method therefore defaults to source precision with –fp-model precise. 
2 For more detail, see the Intel Compiler User and Reference Guides, under Floating-point 

Operations/Understanding Floating-point Operations/Floating-point Environment. 
3
 There are two separate control words for SSE and x87 floating-point arithmetic.  From the 11.1 

compiler onwards, the x87 FP control word should not normally be of concern unless the /arch:IA32 (-

mia32) option for the support of older processors is specified. 
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constant expressions at compile time, speculation of floating point operations and 

others1. 

Precise Floating-Point Exceptions 

By default, (precise exceptions disabled), code may be reordered by the compiler 

during optimization, and so floating-point exceptions might not occur at the same 

time and place as they would if the code were executed exactly as written in the 

source. This effect is particularly important for x87 arithmetic where exceptions are 

not signaled as promptly as for SSE. 

 

Precise FP exceptions may be enabled by one of: 

 /fp:strict     (-fp-model strict) 

 /fp:except  (-fp-model except) 

 #pragma float_control(except,on)      (C and C++ only) 

 

When enabled, the compiler must account for the possibility that any FP operation 

might throw an exception. Optimizations such as speculation of floating-point 

operations are disabled, as these might result in exceptions coming from a branch 

that would not otherwise be executed. This may prevent the vectorization of certain 

loops containing “if” statements, for example. The compiler inserts fwait after other 

x87 instructions, to ensure that any floating-point exception is synchronized with 

the instruction causing it. Precise FP exceptions may only be enabled in value-safe 

mode, i.e. with /fp:precise (-fp-model precise) or #pragma float_control(precise,on). 

Value-safety is already implied by /fp:strict (-fp-model strict). 

 

Note that enabling precise FP exceptions does not unmask FP exceptions. That must 

be done separately, e.g. with a function call, or (for Fortran only) with the command 

line switch /fpe:0 (-fpe0)  or  /fpe-all:0 (-fpe-all0). 

Example of precise exceptions: 

double  x,  zero = 0.; 

   feenableexcept(FE_DIVBYZERO); 

   for( int i = 0; i < 20; i++ ) 

      for( int j = 0; j < 20; j++) 

         x = zero ? (1./zero) : zero; 

      ….. 

                                                 
1
 Other optimizations that are disabled: 

Partial redundancy elimination 

Common subexpression elimination 

Dead code elimination 

Conditional transform,  i.e.     if (c) x = y; else x = z;  x = (c) ? y : z; 
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A floating point exception occurred, despite the explicit protection, because the 

calculation of (1./zero) gets hoisted out of the loop by the optimizer, so that it is only 

evaluated once, but the branch implied by “?” remains in the loop. 

 

The optimization leading to the premature exception may be disabled in one of the 

following ways: 

 

 icc –fp-model precise –fp-model except      (or icc –fp-model strict)                        

This disables all optimizations that could affect FP exception semantics. 

 icc –fp-speculation safe 

disables just speculation where this could cause an exception. 

 #pragma float_control(except on|off)        around the affected code block. 

 

Floating Point Contractions 

 

This refers primarily to the generation of fused multiply-add (FMA) instructions on 

the IA-64 architecture, which is enabled by default. The compiler may generate a 

single FMA instruction for a combined multiply and add operation, e.g.  a = b*c + d.  

This leads to faster, slightly more accurate calculations, but results may differ in the 

last bit from separate multiply and add instructions. 

 

Floating point contractions may be disabled by one of the following: 

 /fp:strict  (-fp-model strict) 

 #pragma float_control(fma,off) 

 /Qfma-   (-no-fma)         (this overrides the /fp or –fp-model setting) 

When disabled, the compiler must generate separate multiply and add instructions, 

with rounding of the intermediate result. 

 

Typical Performance Impact of /fp:precise /fp:source                                               

(-fp-model precise –fp-model source) 
 

The options /fp:precise /fp:source /Qftz  (-fp-model precise –fp-model source –ftz) 

are recommended to improve floating point reproducibility while limiting 

performance impact, for typical applications where the preservation of denormalized 

numbers is not important.  The switch /fp:precise (-fp-model precise) disables certain 

optimizations, and therefore tends to reduce application performance. The impact 

may vary significantly from one application to another, but is illustrated by 

performance estimates using the SPECCPU2000fp benchmark suite with base 

options: 
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Architecture Performance  

Reduction 

Compiler Options 

IA-64 ~20% -O3  

Intel 64 ~1% -O2 

Intel 64 ~15% -fast  (implies –O3) 

IA-32                  using SSE ~1% -O2 –msse2 

IA-32 Windows using x87 ~5-10% /O2 /arch:IA32 

IA-32 Linux       using x87 ~20-50% -O2 –mia32 

 

-fp-model precise –fp-model source –ftz  or equivalent used in each case. 

 

The impact is larger on applications built with –O3 because many high level loop 

optimizations involve the reordering of operations. The impact on applications built 

for IA-32 architecture using x87 instructions is larger due to the many conversions 

between source precision and double precision (Windows) or extended precision 

(Linux). Applications built with the Intel Compiler 11.1 for IA-32 architecture do not 

usually generate x87 instructions unless they are built with /arch:IA32 (-mia32) to 

target older processors1 without support for SSE2 instructions. 

 

Additional Remarks 

 

The options /fp:precise /fp:source (-fp-model precise –fp-model source) should also 

be used for debug builds at /Od (-O0). In Intel compiler versions prior to 11.1, /Od (-

O0) implied /Op (-mp), which could result in the generation of x87 instructions, even 

on Intel 64 architecture, unless overridden with /fp:source (-fp-model source). 

 

From the 11.0 compiler onwards, loops containing math functions such as log() or 

sin() are not vectorized by default with /fp:precise (-fp-model precise), since this 

would result in a function call to a different math library that returns different, 

slightly less accurate results than the standard math library (see following section). 

The switch /Qfast-transcendentals (-fast-transcendentals) may be used to restore 

the 10.1 compiler behavior and re-enable vectorization. 

 

 

 

                                                 
1 Such as Intel® Pentium® III and older processors. 
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Math Library Functions 
 

As yet, no official standard specifies the accuracy of mathematical functions1 such as 

log() or sin(), or how the results should be rounded. Different implementations of 

these functions may not have the same accuracy or be rounded in the same way.   

 

The Intel compiler may implement math functions in the following ways: 

 By standard calls to the optimized Intel math library libm (on Windows) or 

libimf (on Linux or Mac OS X). These calls are mostly compatible with math 

functions in the Microsoft C runtime library libc (Windows) or the GNU library 

libm (Linux or Mac OS X). 

 By generating inline code that can be optimized in later stages of the 

compilation  

 By architecture-specific calling sequences (e.g. by passing arguments via SIMD 

registers on IA-32 processors with support for SSE2) 

 By calls to the short vector math library (libsvml) for loops that can be 

vectorized 

 

For the 11.0 and later compilers, calls may be limited to the first of these methods 

by the switch /fp:precise (-fp-model precise) or by the more specific switches /Qfast-

transcendentals- (-no-fast-transcendentals). This makes the calling sequence 

generated by the compiler consistent between different optimization levels or 

different compiler versions. However, it does not ensure consistent behavior of the 

library function itself. The value returned by a math library function may vary: 

 Between one compiler release and another, due to algorithmic and 

optimization improvements 

 Between one run-time processor and another. The math libraries contain 

function implementations that are optimized for different processors. The 

code automatically detects what type of processor it is running on, and 

selects the most appropriate implementation. For example, a function 

involving complex arithmetic might have implementations both with and 

without SSE3 instructions. The implementation that used SSE3 instructions 

would be invoked only on a processor that was known to support these. 

 

The variations in the results of math functions discussed above are small. The 

expected accuracy, about 0.55 units in the last place (ulp) for the standard math 

library and less than 4 ulp for the short vector math library used for vectorized loops, 

                                                 
1 With the exception of division and square root functions. 
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is maintained both for different compiler releases and for implementations optimized 

for different processors. 

 

There is no direct way to enforce bit-for-bit consistency between math libraries 

coming from different compiler releases. It may be possible to use the runtime 

library from the higher compiler version in conjunction with both compilers when 

checking for consistency of compiler generated code. 

 

There is currently no compiler switch that will override the processor dependency of 

results returned by math library functions. Such an option may be provided in a 

future compiler release. If so, it will be at some cost in performance, since it will need 

to call less optimized functions that can execute on a wide range of processors.  

 

Adoption of a formal standard with specified rounding for the results of math 

functions would encourage further improvements in floating-point consistency, 

including between different architectures, but would likely come at an additional cost 

in performance. 

 

Bottom Line 
 

Compiler options let you control the tradeoffs between accuracy, reproducibility and 

performance.  Use /fp:precise /fp:source (Windows) or –fp-model precise –fp-model 

source (Linux or Mac OS X) to improve the consistency and reproducibility of 

floating-point results while limiting the impact on performance1. 

 

Further Information 
 

• Microsoft Visual C++* Floating-Point Optimization 

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx 

• The Intel® C++ and Fortran Compiler User and Reference Guides, 

      “Floating Point Operations” section. 

•    “Floating Point Calculations and the ANSI C, C++ and Fortran Standard”  

http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm            

or see the list at   http://www.intel.com/cd/software/products/asmo-

na/eng/330130.htm   

• Goldberg, David: "What Every Computer Scientist Should Know About 

Floating-Point Arithmetic“ Computing Surveys, March 1991, pg. 203 

         

                                                 
1
  /fp:source implies also /fp:precise 

http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm
http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm
http://www.intel.com/cd/software/products/asmo-na/eng/330130.htm
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Appendix 
 

Quick summary of primary floating-point switches: 

 

 

Primary Switches Description 

/fp:keyword 

-fp-model keyword 

fast[=1|2], precise, source, except, strict 

 [ double, extended  -  C++ only] 

Controls floating point semantics 

/Qftz[-]             -[no-]ftz Flushes denormal results to Zero 

Other switches   

/Qfast-transcendentals[-]       

-[no-]fast-transcendentals 

Enable[Disable] use of fast math functions 

/Qprec-div[-]    -[no-]prec-div Improves precision of floating point divides 

/Qprec-sqrt[-]  -[no-]prec-sqrt Improves precision of square root calculations 

/Qfp-speculation keyword 

-fp-speculation  keyword 

fast, safe, strict, off 

floating point speculation control 

/fpe:0               -fpe0 Unmask floating point exceptions  (Fortran only) and 

disable generation of denormalized numbers 

/Qfp-port         -fp-port Round floating point results to user precision 

/Qprec             -mp1 More consistent comparisons & transcendentals 

/Op[-]  -mp [-nofltconsistency] Deprecated;   use /fp:source  etc  instead 

/Qfma[-]          -[no-]fma Enable[Disable] use of fma instructions on IA-64 

/Qfp-relaxed  -fp-relaxed Same as  -no-prec-div –no-prec-sqrt   on IA-64 

 


