
CONTENTS 5

e.g., [83, 84, 85, 86, 87, 88, 89]), and non-axisymmetric instabilities in rapidly rotating

polytropic NS models [84, 89, 90].

Simultanious to the advances in both our physical understanding of relativistic dynamics

and the numerical techniques required to study them, a set of computational tools and

libraries has been developed with the aim of providing a computational core that can

enable new science, broaden the community, facilitate interdisciplinary research and take

advantage of emerging petascale computers and advanced cyberinfrastructure: the Cactus

computational toolkit [91]. While it was developed in large part by computer scientists, its

development was driven by direct input from other fields, especially numerical relativity, and

has succeeded in applying expertise in computer science directly to problems in numerical

relativity.

This success prompted usage of the Cactus computational toolkit in other areas, such

as ocean forecast models [92] and chemical reaction simulations [93]. At the same time,

the growing number of results in numerical relativity increased the need for commonly

available utilities such as comparison and analysis tools, typically those specifically designed

for astrophysical problems. Including them within the Cactus computational toolkit was

not felt to fit within its rapidly expanding scope. This triggered the creation of the Einstein

Toolkit [94]. Large parts of the Einstein toolkit presently do make use of the Cactus toolkit,

but this is not an requirement, and other contributions are welcome, encouraged and have

been accepted in the past.

2. Requirements

2.1. Scientific

While the aforementioned studies collectively represent breakthrough simulations that have

significantly advanced the modeling of relativistic astrophysical systems, all simulations are

presently missing one or more critical physical ingredients and are lacking the numerical

precision to accurately and realistically model the large-scale and small-scale dynamics of

their target systems simultaneously.

One of the aims of the Einstein Toolkit is to provide or extend some of these missing

ingredients in the course of its development. The three most important of all possible

additions, as deemed by the Einstein Toolkit members, are listed below:

• MHD. Many studies, in particular those concerned with massive star collapse, NS-NS or

BH-NS binaries and rotational non-axisymmetric instabilities, are still performed in pure

GRHD. Without a doubt, these systems must be simulated with GRMHD to capture

the e↵ects of magnetic fields which in many cases will alter the simulation outcome on

a qualitative level and may be the driving mechanisms behind much of the observable

EM signature from GRBs (e.g., [95]) and magneto-rotationally exploding core-collapse

supernovae (e.g., [96]). In addition, all simulations that have taken magnetic fields

into account are still limited to the ideal MHD approximation, which assumes perfect

edits above this line will be carried out by myself (once Frank has sorted out
conflicts).

Why do we need this section? We don't even implement MHD nor neutrino transport,
nor high order schemes. Isn't that something that should go into the conclusions/
outlook? The reader will be quite confused by this.

the reader won't know what an ET member is

Legend:
A -- awkward; rephrase
E -- English issue
T -- tenses issue

CONTENTS 6

conductivity. Non-ideal GRMHD schemes are just becoming available (see, e.g., [97, 98]),

but have yet to be implemented widely in many branches of numerical relativity.

• Equation of state (EOS), microphysics, and radiation transport. Most presently

published 3D GR(M)HD simulations, with the exception of recent work on massive

star collapse (see, e.g., [80]) and binary mergers (see, e.g., [48]), relied on simple

zero-temperature descriptions of NS stellar structure, with many assuming simple

polytropic forms. Such EOSs are computationally e�cient, but are not necessarily a

good description for matter in relativistic astrophysical systems. The inclusion of finite-

temperature EOSs, derived from the microphysical descriptions of high-density matter,

will lead to qualitatively di↵erent and much more astrophysically reliable results (see,

e.g., [80]). In addition, most GR(M)HD studies neglect transport of neutrinos and

photons and their interactions with matter. Neutrinos in particular play a crucial role in

core-collapse supernovae and in the cooling of NS-NS merger remnants, thus they must

not be left out when attempting to accurately model such events. Few studies have

incorporated neutrino and/or photon transport and interactions in approximate ways

(see, e.g., [80, 99, 48]).

• High-order schemes and AMR. Numerical accuracy is a central issue in long-term

GR(M)HD simulations and must be addressed by a combination of (1) adaptive mesh

refinement (AMR), which is used to focus grid points on regions where finer resolution

is needed, and (2) high-order numerical techniques.

Several AMR codes, including the Carpet driver [100] included in the Einstein Toolkit,

are publicly available. An important task going forward is to facilitate the coupling of

existing and future GRMHD codes with AMR to avoid under-resolving the dynamics in

the systems under investigation. AMR methods are often much more complicated than

uniformly distributed mesh methods, and require sophisticated algorithms to make use

of massively parallel systems e�ciently.

While AMR can increase resolution near regions of interest within the computational

domain, it does not increase the convergence order of the underlying numerical methods.

Simulations of BHs can easily make use of high-order numerical methods, with eighth-

order convergence commonly seen at present. However, most GRMHD schemes,

while implementing high-resolution shock-capturing methods, are still limited to 2nd-

order numerical accuracy in the hydrodynamic/MHD sector while performing curvature

evolution with 4th-order accuracy or more. Higher order GRMHD schemes are in use

in fixed-background simulations (e.g., [101]), but still await implementation in fully

dynamical simulations.

2.2. Academic and Social

A primary concern for research groups is securing reliable funding to support graduate

students and postdoctoral researchers. This goal is easier to achieve if it can be shown

that science goals can be attacked directly with fewer potential infrastructure problems, one

NS structe

Duez
et
al. '10

A

CONTENTS 7

of the goals of the Einstein Toolkit.

While the Einstein Toolkit does have a large group of users, many of them are not directly

collaborating on science problems, and some can even be seen as competitors. However,

all groups agree that sharing the development of the underlying infrastructure is mutually

beneficial for every group and the wider community as well. This is achieved by lifting much

of the otherwise necessary burden of creating such an infrastructure o↵ the research groups’

shoulders, while at the same time increasing the amount of code review, and by doing so,

code quality.

In addition, the Einstein Toolkit provides computer scientists an ideal platform to

perform state-of-the-art research, which directly benefits research in other areas of science

and provides an immediate application of their research. One of the most prominent examples

within the Einstein Toolkit is the Cactus computational toolkit, a framework developed by

computer scientists and now used by researchers is many other fields.

3. Design and Strategy

The mechanisms for the development and support of the Einstein Toolkit are designed to

be open, transparent and community-driven. The complete source code, documentation

and tools included in the Einstein Toolkit are distributed under open-source licenses. The

Einstein Toolkit maintains a version control system (svn.einsteintoolkit.org) with open

access that contains software supported by the Einstein Toolkit, the toolkit web pages, and

documentation. An open wiki for documentation (docs.einsteintoollkit.org) has been

established where the community can contribute either anonymously or through personal

authentication. Almost all discussions about the toolkit take place on an open mail list

(users@einsteintoolkit.org). The regular weekly meetings for the Einstein Toolkit are

open and the community is invited to participate. Meeting minutes are recorded and publicly

available as well. The Einstein Toolkit blog requires users to first request a login, but then

allows for posting at will. Any user can post comments to entries already on the blog. The

community makes heavy use of an issue tracking system (trac.einsteintoolkit.org), with

submissions also open to the public.

Despite this open design, some actions naturally have to be restricted to a smaller group

of maintainers. This is true for, e.g., administrative tasks like the setup and maintenance of

the services themselves, or to avoid large amounts of spam. One of the most important tasks

of an Einstein Toolkit maintainer is to review and apply patches sent by users in order to

ensure a high software quality level. Every substantial change or addition to the toolkit has

to be reviewed by another Einstein Toolkit maintainer, and is generally open for discussion

on the users mailing list. This convention, despite not being technically enforced, works well

in practice, and is at the same time promoting active development.

add ref to users list on
webpage

what about reproducibility
and physics benchmarking?

this is
proposal
bullshit
language
;
please
rephrase

CONTENTS 8

4. Core Technologies

The Einstein Toolkit consists of many components which, combined by the user, are utilized

together to perform a full simulation. While all of these components have important tasks, a

few stand out, and four are described in more detail below: the Cactus framework, providing

the underlying infrastructure of which many other components make use, adaptive mesh

refinement drivers, without which most results could not be obtained in reasonable time,

the Simulation Factory, because it simplifies the necessary supercomputer usage, and Kranc,

which can generate code in a computer language from a high-level description in Mathematica.

4.1. Cactus Framework

The Cactus Framework [91, 102, 103] is an open source, modular, portable programming

environment for collaborative HPC computing, primarily developed at Louisiana State

University. The Cactus computational toolkit consists of general modules providing parallel

drivers, coordinates, boundary conditions, interpolators, reduction operators, and e�cient

I/O in di↵erent data formats. Generic interfaces are used, making it possible to use external

packages and improved modules which are immediately available to its users. Cactus is

involved in the NSF Blue Waters consortium for petascale computing, and has funding from

NSF SDCI to develop new application-level tools for performance and correctness.

The structure of the Cactus framework is completely modular, with only a very small

core providing the interfaces between modules, both at compile- and run-time. The Cactus

modules, called “thorns”, may, and typically do, specify inter-module dependencies, e.g.,

to share or extend configuration information, common variables, or runtime parameters.

Modules compiled into an executable can remain dormant at run-time. This usage of modules

and a common interface between them, enables researchers to 1) easily use modules written

by others without the need to understand all details of their implementation, and 2) to write

their own modules without the need to change the source code of other parts of a simulation,

in the (supported) programming language of their choice. The number of active modules

within a typical Cactus simulation ranges from tens to hundreds, often with an extensive set

of inter-module dependencies.

The Cactus Framework was developed by the numerical relativity community, and

although it is a general component framework that supports di↵erent application domains its

core user group has remained from numerical relativity. The Cactus team has traditionally

developed and supported a set of core modules for numerical relativity, as part of the

CactusEinstein arrangement. Over the last few years however, the relevance of many of the

modules has declined, and more and more of the basic infrastructure for numerical relativity

has been provided by open modules distributed by research groups within the community.

The Einstein Toolkit now collects the widely used parts of CactusEinstein, combined with

contributions from the community.

this entire paragraph needs improvement. DO NOT expect
the
reader to know what you are talking about. It's great that
simfactory simplifies supercomputer usage, but the reader
won't know what the hell it is in the first place. Not a good idea
to lead into the discussion this way.

mention roots in development at the AEI and NCSA.

this is not
a proposal

(the "flesh")

E

I don't think such purely historical
code admin information is needed.
It's a waste of space and will confuse
the reader who may not care about
CactusEinstein.

CONTENTS 9

4.2. Adaptive Mesh Refinement

In Cactus, infrastructure capabilities such as memory management, parallelization, time

evolution, mesh refinement, and I/O are delegated to a set of special driver components. This

helps separate physics code from infrastructure code; in fact, a typical physics component

(implementing, e.g., the Einstein or relativistic MHD equations) does not contain any code

or subroutine calls having to do with parallelization, time evolution, or mesh refinement.

The information provided in the interface declarations of the individual components allows

a highly e�cient execution of the combined program.

The Einstein Toolkit o↵ers two drivers, PUGH and Carpet. PUGH provides domains

consisting of a uniform grid with Cartesian topology, and is highly scalable (up to more

than 130,000 cores on a Blue Gene/P [104].) Carpet [105, 106, 100] provides multi-block

methods and adaptive mesh refinement (AMR). Multi-block methods cover the domain with

a set of (possibly distorted) blocks that exchange boundary information via techniques such as

interpolation or penalty methods.‡ The AMR capabilities employ the standard Berger-Oliger

algorithm [107] with subcycling in time.

AMR implies that resolution in the simulation domain is dynamically adapted to the

current state of the simulation, i.e., regions that require a higher resolution are covered with

blocks with a finer grid (typically by a factor of two); these are called refined levels. Finer

grids can be also recursively refined again. At regular intervals, the resolution requirements

in the simulation are re-evaluated, and the grid hierarchy is updated; this step is called

regridding.

Since a finer grid spacing also requires smaller time steps for hyperbolic problems, the

finer grids perform multiple time steps for each coarse grid time step, leading to a recursive

time evolution pattern that is typical for Berger-Oliger AMR. If a simulation uses 11 levels,

then the resolutions (both in space and time) of the the coarsest and finest levels di↵er by a

factor of 211�1 = 1024. This non-uniform time stepping leads to a certain complexity that is

also handled by the Carpet driver; for example, applying boundary conditions to a fine level

requires interpolation in space and time from a coarser level. Outputting the solution at a

time in between coarse grid time steps also requires interpolation. These parallel interpolation

operations are implemented e�ciently in Carpet, and are applied automatically as specified

in the execution schedule, i.e. without requiring function calls in user code. Figure 1 describes

some details of the Berger-Oliger time stepping algorithm. More details are described in [105].

Carpet is the main driver used today for Cactus-based astrophysical simulations. Carpet

o↵ers hybrid MPI/OpenMP parallelization and is used in production on up to several

thousand cores. Figure 2 shows a weak scaling test of Carpet, where McLachlan (see

section 5.3 below) solves the Einstein equations on a grid structure with nine levels of mesh

refinement. This demonstrates excellent scalability up to more than ten thousand cores. (In

production simulations, smaller and more complex grid structures and other necessary tasks

‡ Although multi-block methods are supported by Carpet, the Einstein Toolkit itself does not yet contain
any multi-block coordinate systems.

way outdated; can't we just not say what computer it was?

add refs.

sentence too general; get rid of parentheses

currently

CONTENTS 10

1
3

2

4

t

Figure 1. Berger-Oliger time stepping details, showing a coarse and a fine grid, with time
advancing upwards. Left: Time stepping algorithm. First the coarse grid takes a large
time step, then the refined grid takes two smaller steps. The fine grid solution is then
injected into the coarse grid where the grids overlap. Right: Fine grid boundary conditions.
The boundary points of the refined grids are filled via interpolation. This may require
interpolation in space and in time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 16 64 256 1k 4k 16k

tim
e

 p
e

r
R

H
S

 e
va

lu
a

tio
n

 [
µ

s]

number of cores

Cactus Benchmark

Franklin
HLRB II
Kraken

Queen Bee
Ranger

Figure 2. Results from weak scaling tests evolving the Einstein equations on a mesh
refinement grid structure with nine levels. This shows the time required per grid point, where
smaller numbers are better, and ideal scaling would be a horizontal line. This demonstrates
excellect scalability to up to more than 10,000 cores. Including hydrodynamics approximately
doubles calculation times without negatively influencing scalability.

reduce scalability by about a factor of ten.)

We estimate that, in 2010, about 7,000 core years of computing time (45 million core

hours) were used via Carpet by more than a dozen research groups world-wide. To date,

more than 90 peer-reviewed publications and more than 15 student theses are based on

Carpet [100].

4.3. Simulation Factory

Today’s supercomputers di↵er significantly in their hardware configuration, available

software, directory structure, queueing system, queuing policy, and many other user-

visible properties. In addition, the system architectures and user interfaces o↵ered by

supercomputers are very di↵erent to those o↵ered by laptops or workstations. This

makes performing large, three-dimensional time-dependent simulations a complex and time

consuming task with a steep learning curve. However, most of these di↵erences are only

up to

have been

CONTENTS 11

superficial, and the basic capabilities of supercomputers are very similar; most of the

complexity of managing simulations lies in menial tasks that require no physical or numerical

insight.

The Simulation Factory [108, 109] o↵ers a set of abstractions for the tasks necessary to

set up and successfully finish numerical simulations based on the Cactus framework. These

abstractions hide tedious low-level management operations, they capture “best practices”

of experienced users, and they create a log trail ensuring repeatable and well-documented

scientific results. Using these abstractions, most operations are much simplified, many types

of potentially disastrous user errors are avoided, allowing di↵erent supercomputers to be used

in a uniform manner.

Using the Simulation Factory, we are able to o↵er a tutorial for the Einstein Toolkit [94]

that lets new users download, configure, build, and run full simulations of the coupled

Einstein/relativistic hydrodynamics equations on a supercomputer with a few simple

commands. Users need no prior knowledge about either the details of the architecture of

a supercomputer nor its particular software configuration. The same exact set of SimFactory

commands can be used on all other supported supercomputers to run the same simulation

there.

The Simulation Factory supports and simplifies three kinds of operations:

Remote Access The actual access commands and authentication methods di↵er between

systems, as do the user names that a person has on di↵erent systems. Some systems

are not directly accessible, and one must log in to a particular “trampoline” server first.

The Simulation Factory hides this complexity.

Configuring and Building Building Cactus requires certain software on the system, such

as compilers, libraries, and build tools. Many systems o↵er di↵erent versions of these,

which may be installed in non-default locations. Finding a working combination that

results in e�cient code is extremely tedious and requires low-level system experience.

The Simulation Factory provides a machine database that enables users to store and

exchange this information. In many cases, this allows people to begin to use a new

machine in a very short time with just a few, simple commands.

Submitting and Managing Simulations Many simulations run for days or weeks,

requiring frequent checkpointing and job re-submission because of short queue run-

time limits. Simple user errors in these menial tasks can potentially destroy weeks

of information. The Simulation Factory o↵ers safe commands that encapsulate best

practices that prevent many common errors and leave a log trail.

The above features make running simulations on supercomputers much safer and simpler.

4.4. Kranc

Kranc[110, 111, 112] is a Mathematica application which converts a high-level continuum

description of a PDE into a highly optimized module for Cactus, suitable for running on

complete

reformat
to use
less space

have not yet looked at text below this line.

