Consider the elliptic equation

$$
\begin{equation*}
\alpha \frac{\partial^{2} \psi}{\partial x^{2}}-\rho=0 \tag{1}
\end{equation*}
$$

Using the notation $\psi_{i}^{n}=\psi\left(t_{n}, x_{i}\right)$, we can do a finite difference

$$
\begin{equation*}
\alpha \frac{\psi_{i-1}^{n}-2 \psi_{i}^{n+1}+\psi_{i+1}^{n}}{\Delta x^{2}}=\rho_{i} \tag{2}
\end{equation*}
$$

(the liberty we took to use ψ_{i}^{n+1} here is to make it an iterative process, similar to the derivation of GaussSeidel). Solving this for ψ_{i}^{n+1},

$$
\begin{equation*}
\psi_{i}^{n+1}=\psi_{i}^{n}+\frac{\psi_{i-1}^{n}-2 \psi_{i}^{n}+\psi_{i+1}^{n}}{2}-\frac{\Delta x^{2}}{2 \alpha} \rho_{i} . \tag{3}
\end{equation*}
$$

Now consider the related parabolic equation

$$
\begin{equation*}
\alpha \frac{\partial^{2} \psi}{\partial x^{2}}-\rho=\frac{\partial \psi}{\partial t} . \tag{4}
\end{equation*}
$$

Again, we finite difference

$$
\begin{equation*}
\alpha \frac{\psi_{i-1}^{n}-2 \psi_{i}^{n+1}+\psi_{i+1}^{n}}{\Delta x^{2}}-\rho_{i}=\frac{\psi_{i}^{n+1}-\psi_{i}^{n}}{\Delta t} \tag{5}
\end{equation*}
$$

and solve for ψ_{i}^{n+1}

$$
\begin{equation*}
\psi_{i}^{n+1}=\psi_{i}^{n}+\alpha \Delta t \frac{\psi_{i-1}^{n}-2 \psi_{i}^{n}+\psi_{i+1}^{n}}{\Delta x^{2}}-\Delta t \rho_{i} . \tag{6}
\end{equation*}
$$

The two solutions (3) and (6) are only the same if

$$
\begin{equation*}
\Delta t=\frac{\Delta x^{2}}{2 \alpha} \tag{7}
\end{equation*}
$$

So, if we change the coefficient of the spatial derivative (the ct_cxx, etc. in CT_MultiLevel), we should change Δt as well.

Alternatively, (7) can be seen as related to the Courant condition for stability. Changing α in (4) changes the characteristics of the equation so the time step should be changed as well.

