[Commits] [svn:einsteintoolkit] Paper_EinsteinToolkit_2010/ (Rev. 307)

knarf at cct.lsu.edu knarf at cct.lsu.edu
Tue Mar 13 09:49:04 CDT 2012


User: knarf
Date: 2012/03/13 09:49 AM

Modified:
 /
  ET.tex

Log:
 fix newly introduced typos

File Changes:

Directory: /
============

File [modified]: ET.tex
Delta lines: +6 -6
===================================================================
--- ET.tex	2012-03-13 14:41:53 UTC (rev 306)
+++ ET.tex	2012-03-13 14:49:04 UTC (rev 307)
@@ -1195,7 +1195,7 @@
 \end{figure}
 
  \codename{Meudon\_Bin\_BH} can read in BH-BH binary initial data described 
-in~\cite{Grandclement:2001ed}, representing solutions to the hamiltonian and momentum constraints, along with the trace of the spatial components of the Einstein equations, form the linked elliptic equation set:
+in~\cite{Grandclement:2001ed}, representing solutions to the Hamiltonian and momentum constraints, along with the trace of the spatial components of the Einstein equations, form the linked elliptic equation set:
 \begin{eqnarray*}
 &&\nabla^2\alpha_{(m)} = \alpha \psi^4 K_{ij} K^{ij}_{(m)}\\
 &&\nabla^2\psi_{(m)}=-\frac{\psi^5}{8}K_{ij}K^{ij}_{(m)}\\
@@ -2081,8 +2081,8 @@
 \label{eq:christodoulou}
 \end{equation}
 that takes into account the
-contributions of the irreducuble mass $M_{\mathrm{ir}}$ and angular
-momemtum $S$ to the total black hole mass $M$.
+contributions of the irreducible mass $M_{\mathrm{ir}}$ and angular
+momentum $S$ to the total black hole mass $M$.
 
 Finally, the module \codename{HydroAnalysis} additionally locates the 
 (coordinate) center of mass as well as the point of maximum rest mass density of a 
@@ -2496,7 +2496,7 @@
 extracted at $R=30\mathrm{M}$, and its numerical convergence.
 In this and in the following sections, a numerical quantity $\Psi$ is
 said to converge with convergence order $Q$ if for a set of numerical
-stepsizes $h_1$, $h_2$, $h_3$ the difference between successive
+step sizes $h_1$, $h_2$, $h_3$ the difference between successive
 resolutions scales as
 \begin{equation}
     \frac{\Psi_{h_1}-\Psi_{h_2}}{\Psi_{h_2}-\Psi_{h_3}} = \frac{h_1^Q-h_2^Q}{h_2^Q-h_3^Q}\,.
@@ -3021,8 +3021,8 @@
 star's coordinate radius is twice the size of the forming apparent
 horizon~\cite{Thierfelder:2010dv}. At this point the majority of the
 matter is inside the apparent horizon, whose size quickly grows to its
-final size while the numerical spacetime aproaches the final ``trumpet''
-configuraton.
+final size while the numerical spacetime approaches the final ``trumpet''
+configuration.
 
 In Figure~\ref{fig:tov_collapse_H_convergence_at0}, we display the
 convergence factor for the Hamiltonian constraint



More information about the Commits mailing list