[Commits] [svn:einsteintoolkit] Workshop_Spring_2012/numerical_relativity/ (Rev. 31)
diener at cct.lsu.edu
diener at cct.lsu.edu
Tue Apr 3 22:41:18 CDT 2012
User: diener
Date: 2012/04/03 10:41 PM
Modified:
/numerical_relativity/
numerical_relativity.tex
Log:
First slide on MoL.
File Changes:
Directory: /numerical_relativity/
=================================
File [modified]: numerical_relativity.tex
Delta lines: +30 -5
===================================================================
--- numerical_relativity/numerical_relativity.tex 2012-04-04 01:40:55 UTC (rev 30)
+++ numerical_relativity/numerical_relativity.tex 2012-04-04 03:41:18 UTC (rev 31)
@@ -15,8 +15,8 @@
% \item 3+1 spacetime decomposition.
\item The BSSN formulation.
\item Puncture data.
- \item Finite Differencing.
-% \item The method of lines.
+ \item Finite differencing.
+ \item The method of lines.
\end{itemize}
}
@@ -214,7 +214,7 @@
that $\psi$ has a unique solution.
}
-\frame{\frametitle{Finite Differencing}
+\frame{\frametitle{Finite differencing}
With finite differencing we discretize a function by sampling it at a
collection of grid points.\pause
@@ -231,7 +231,7 @@
\left. \frac{df}{dx} \right |_{x_i}\approx \frac{1}{\Delta x}\sum_{j=-1}^{j=1} a_j f_{i+j}.
\end{equation}
}
-\frame{\frametitle{Finite Differencing (continued)}
+\frame{\frametitle{Finite differencing (continued)}
The coefficients $a_j$ can be found be expanding $f$ in a Taylor series around
$x_i$ for the grid points in the stencil
\begin{eqnarray}
@@ -253,7 +253,7 @@
with the solution $a_{-1}=-1/2, a_0=0, a_1=1/2$.
}
-\frame{\frametitle{Finite Differencing (continued)}
+\frame{\frametitle{Finite differencing (continued)}
Thus we find that
\begin{equation}
\left. \frac{df}{dx} \right |_{x_i} = \frac{f_{i+1}-f_{i-1}}{2\Delta x}
@@ -276,4 +276,29 @@
It is also clear from either approach that the error estimates are only
correct if $f$ is smooth enough.
}
+
+\frame{\frametitle{The method of lines}
+Consider the set of hyperbolic PDE's
+\begin{equation}
+\partial_t \mathbf{q}+\mathbf{A}^i(\mathbf{q})\partial_i
+\mathbf{B}(\mathbf{q}) = \mathbf{S}(\mathbf{q}).
+\end{equation}\pause
+The idea then is to discretize in space first, i.e.\ write the equations as
+\begin{equation}
+\partial_t \mathbf{q} = \mathbf{L}(\mathbf{q}),
+\end{equation}
+where $\mathbf{L}(\mathbf{q})$ is a discrete approximation to the equations
+(e.g.\ using finite differencing).\pause
+
+This then turns the equations into a set of coupled ODE's with respect to
+time.\pause
+
+If the spatial discretization (including boundary conditions) is stable
+we we can then evolve the system of equations using any stable ODE time
+integrator.\pause
+
+Often Runge-Kutta integration schemes are the scheme of choice.
+
+
+}
\end{document}
More information about the Commits
mailing list