[Commits] [svn:einsteintoolkit] Workshop_Spring_2012/numerical_relativity/ (Rev. 46)
bcmsma at astro.rit.edu
bcmsma at astro.rit.edu
Wed Apr 4 11:13:46 CDT 2012
User: bmundim
Date: 2012/04/04 11:13 AM
Modified:
/numerical_relativity/
numerical_relativity.tex
Log:
approximate riemann solvers, an example.
File Changes:
Directory: /numerical_relativity/
=================================
File [modified]: numerical_relativity.tex
Delta lines: +24 -0
===================================================================
--- numerical_relativity/numerical_relativity.tex 2012-04-04 15:55:15 UTC (rev 45)
+++ numerical_relativity/numerical_relativity.tex 2012-04-04 16:13:46 UTC (rev 46)
@@ -609,7 +609,31 @@
\includegraphics[width=6cm]{rarefaction.pdf}
\end{figure}
+}
+\frame{\frametitle{Approximate Riemann Solvers}
+Usually the exact solution of the Riemann problem is computationally
+very expensive. \pause
+
+Fortunately we can obtain very good approximation for the solutions
+by approximating the conservation law as a quasi-linear system:
+\begin{equation}
+q_t + A q_x = 0
+\end{equation} \pause
+where $A$ is a diagonalizable matrix given by:
+\begin{equation}
+A(q_l,q_r) = \left. \frac{\partial f}{\partial q} \right|_{q=1/2(q_l+q_R)}
+\end{equation} \pause
+Roe solver:
+\begin{equation}
+F^{\rm Roe}_{i+1/2}=\frac{1}{2} \left[f(q^r_{i+1/2})+f(q^l_{i-1/2})
+-\sum_{\alpha} |\lambda_{\alpha}| \omega_{\alpha} r_{\alpha} \right]
+\end{equation}
+where $\lambda_{\alpha}$ are the characteristics speeds, $\omega_{\alpha}$
+the jumps in the characteristics and $r_{\alpha}$ the right eigenvector
+of $A$.
}
+
+
\end{document}
More information about the Commits
mailing list